×

zbMATH — the first resource for mathematics

An improvement on the transient response of tracking for the sampled-data system based on an improved PD-type iterative learning control. (English) Zbl 1293.93709
Summary: An improvement on the transient response of tracking for the sampled-data system based on an improved proportional difference (PD)-type Iterative Learning Control (ILC) is proposed in this paper. The developed analog ILC method and the high-gain property tracker design methodology are first combined to significantly reduce learning epochs and overcome the initial condition shift problem and discontinuous reference input in the traditional ILC. Besides, the proposed ILC improves the transient response and decreases the rate of weighting matrices \(Q\) to \(R\) under the traditional linear quadratic tracker design. First, the off-line observer/Kalman filter identification (OKID) is used to determine the appropriate (low-) order system parameters and state estimator for the physical system with unknown system equation, so that the model-based PD-type ILC can be implemented for practical applications. Then, to improve the transient response and decrease the control effort, the (PD-type) ILC algorithm is combined with the high-gain property linear quadratic tracker (LQT) design to construct the high performance tracker for the model-based sampled-data systems. Furthermore, the discrete-time version high performance tracker design for the unknown stochastic sampled-data system via the iterative learning control method is proposed in this paper based on the Euler method and the digital redesign approach. Finally, some examples are given for illustrating the effectiveness of the proposed method.

MSC:
93E10 Estimation and detection in stochastic control theory
93E11 Filtering in stochastic control theory
68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arimoto, S.; Kawamura, S.; Miyazaki, F., Bettering operation of robots by learning, J. Robot. Syst., 1, 2, 123-140, (1984)
[2] Sun, M.; Wang, D.; Wang, Y., Varying-order iterative learning control against perturbed initial condition, J. Frankl. Inst., 247, 1526-1540, (2010) · Zbl 1202.93053
[3] Kim, T. A.; Sugie, T., An iterative learning control based identification for a class of MIMO continue-time systems in the presence of fixed input disturbance and measurement noises, Int. J. Syst. Sci., 38, 9, 737-748, (2007) · Zbl 1160.93319
[4] Li, X. D.; Chow, T. W.S.; Ho, J. K.L., Iterative learning control for a class of nonlinear discrete-time systems with multiple input delays, Int. J. Syst. Sci., 39, 4, 361-369, (2008) · Zbl 1168.93370
[5] Ruan, X.; Bien, Z.; Park, K. H., Iterative learning controllers for discrete-time large-scale systems to track trajectories with distinct magnitudes, Int. J. Syst. Sci., 36, 4, 221-233, (2005) · Zbl 1085.93527
[6] Arimoto, S., Learning control theory for robotic motion, Int. J. Adapt. Control Signal Process., 4, 6, 543-564, (1990) · Zbl 0738.93052
[7] Kawamura, S.; Miyazaki, F.; Arimoto, S., Realization of robot motion based on a learning method, IEEE Trans. Syst. Man Cybern., 18, 1, 126-134, (1988)
[8] Tayebi, A.; Xu, J. X., Observer-based iterative learning control for a class of time-varying nonlinear systems, IEEE Trans. Circuits Syst.—I: Fundam. Theory Appl., 50, 3, 452-455, (2003) · Zbl 1368.93801
[9] Liu, C.; Xu, J.; Wu, J., On iterative learning control with high-order internal models, Int. J. Adapt. Control Signal Process., 24, 9, 731-742, (2010) · Zbl 1204.93136
[10] Chen, W. S.; Li, R. H.; Li, J., Observer-based adaptive iterative learning control for nonlinear systems with time-varying delays, Int. J. Autom. Comput., 7, 4, 438-446, (2010)
[11] Chen, W.; Zhang, L., Adaptive iterative learning control for nonlinearly parameterized systems with unknown time-varying delays, Int. J. Control Autom. Syst., 8, 2, 177-186, (2010)
[12] Du, Y. Y.; Tsai, J. S.H.; Guo, S. M.; Su, T. J.; Chen, C. W., Observer-based iterative learning control with evolutionary programming algorithm for MIMO nonlinear systems, Int. J. Innov. Comput. Inf. Control, 7, 3, 1357-1373, (2011)
[13] Chu, B.; Owens, D. H., Accelerated norm-optimal iterative learning control algorithms using successive projection, Int. J. Control, 82, 8, 1469-1484, (2009) · Zbl 1194.93123
[14] Ye, Y.; Tayebi, A.; Liu, X., All-pass filtering in iterative learning control, Automatica, 45, 1, 257-264, (2009) · Zbl 1154.93438
[15] Meng, D.; Jia, Y.; Du, J.; Yu, F., Robust learning controller design for MIMO stochastic discrete-time systems: an H_∞-based approach, Int. J. Adapt. Control Signal Process., 25, 7, 653-670, (2011) · Zbl 1222.93239
[16] Zhang, B.; Wang, D.; Ye, Y.; Wang, Y.; Zhou, K., Two-mode ILC with pseudo-down sampled learning in high frequency range, Int. J. Control, 80, 3, 349-362, (2007) · Zbl 1117.93045
[17] Zhang, B.; Wang, D.; Zhou, K.; Ye, Y.; Wang, Y., Pseudo-down sampled iterative learning control, Int. J. Robust Nonlinear Control, 18, 10, 1072-1088, (2008) · Zbl 1284.93153
[18] Zhang, B.; Wang, D.; Ye, Y., Cutoff-frequency phase-in iterative learning control, IEEE Trans. Control Syst. Technol., 17, 3, 681-687, (2009)
[19] Zhang, B.; Wang, D.; Ye, Y.; Zhou, K., Stability and robustness analysis of cyclic pseudo-down sampled iterative learning control, Int. J. Control, 83, 3, 651-659, (2010) · Zbl 1222.93179
[20] Juang, J. N., Applied system identification, (1994), Prentice-Hall Englewood Cliffs, NJ
[21] Tsai, J. S.H.; Chien, T. H.; Guo, S. M.; Chang, Y. P.; Shieh., L. S., State-space self-tuning control for stochastic fractional-order chaotic systems, IEEE Trans. Circuits Syst.—I Fundam. Theory Appl., 54, 3, 632-642, (2007) · Zbl 1374.93324
[22] Tsai, J. S.H.; Chen, F. M.; Guo, S. M.; Chen, C. W.; Shieh, L. S., A novel tracker for a class of sampled-data nonlinear system, J. Vibr. Control, 17, 01, 81-101, (2011) · Zbl 1271.93079
[23] B.L. Ho, R.E. Kalman, Effective construction of linear state-variable models from input-output data, in: Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, University of Illinois, Monticello, IL, 1965, pp. 449-459.
[24] Juang, J. N.; Pappa, R. S., Effects of noise on modal parameters identified by the eigen system realization algorithm, J. Guid. Control Dyn., 9, 3, 294-303, (1986)
[25] Tsai, J. S.H.; Shieh, C. S.; Sun, Y. Y., Digital modeling and robust digital redesign of sampled-data uncertain systems via the interval tuning bilinear approximation method, J. Frankl. Inst., 338, 5, 615-630, (2001) · Zbl 0981.93042
[26] Chen, C. W.; Tsai, J. S.H.; Shieh, L. S., Modeling and solution of two- dimensional input time-delay system, J. Frankl. Inst., 339, 6, 569-578, (2003) · Zbl 1016.93032
[27] Tsai, J. S.H.; Wu, M. C.; Dunn, A. C.; Shieh, L. S., Digital redesign tracker for cascaded analog system with state saturation and external loads, J. Frankl. Inst., 342, 7, 852-876, (2005) · Zbl 1148.93314
[28] Ababneh, M.; Almanasreh, A. M.; Amasha, H., Design of digital controllers for uncertain chaotic systems using fuzzy logic, J. Frankl. Inst., 346, 6, 543-556, (2009) · Zbl 1169.93353
[29] Chang, Y. P.; Tsai, J. S.H.; Shieh, L. S., Optimal digital redesign of hybrid cascaded state-delay systems under state and control constraints, IEEE Trans. Circuits Syst., 49, 9, 1382-1392, (2002)
[30] Tsai, J. S.H.; Wei, C. L.; Guo, S. M.; Leang, L. S.; Liu, C. R., EP-based adaptive tracker with observer and fault estimator for nonlinear time-varying sampled-data systems against actuator failures, J. Frankl. Inst., 346, 10, 508-535, (2008) · Zbl 1167.93371
[31] Guo, S. M.; Shieh, L. S.; Chen, G.; Lin, C. F., Effective chaotic orbit tracker: a prediction-based digital redesign approach, IEEE Trans. Circuits Syst.—I Fundam. Theory Appl., 47, 11, 1557-1570, (2000) · Zbl 0999.93024
[32] Lee, Y. U.; Tsai, J. S.H.; Shieh, L. S.; Chen, G., Equivalent linear observer-based tracker for stochastic chaotic system with delays and disturbances, IMA J. Math. Control Inf., 22, 3, 266-284, (2005) · Zbl 1091.93045
[33] Hu, N. T.; Tsai, J. S.H.; Guo, S. M.; Shieh, L. S.; Chen, Y., Low-order multi-rate linear time-invariant decentralized trackers using new observer-based sub-optimal method for unknown sampled-data nonlinear time-delay system with closed-loop decoupling, Optim. Control Appl. Methods, 32, 4, 433-475, (2010) · Zbl 1258.93075
[34] Chow, T. W.S.; Fang, Y., An iterative learning control method for continuous-time systems based on 2-D system theory, IEEE Trans. Circuits Syst.—I Fundam. Theory Appl., 45, 4, 683-689, (1998) · Zbl 0991.93058
[35] Li, X. D.; Chow, T. W.S.; Ho, J. K.L., 2-D system theory based iterative learning control for linear continuous systems with time delays, IEEE Trans. Circuits Syst.—I Fundam. Theory Appl., 52, 7, 1421-1430, (2005) · Zbl 1374.93177
[36] Tsai, J. S.H.; Du, Y. Y.; Zhuang, W. Z.; Guo, S. M.; Chen, C. W.; Shieh, L. S., Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints, IET Control Theory Appl., 5, 3, 447-464, (2011)
[37] Kuo, B. C., Automatic control systems, (1982), Prentice-Hall Englewood Cliffs, NJ · Zbl 0542.93001
[38] Ralston, A., A first course in numerical analysis, (1965), Dover Publications: McGraw-Hill NY · Zbl 0139.31603
[39] B. Roszak, E.J. Davison. The servomechanism problem for unknown MIMO LTI positive systems: Feed forward and robust tuning regulators, American Control Conference, Westin Seattle Hotel, Seattle, Washington, vol. 15(5), 2008, pp. 4821-4826.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.