×

zbMATH — the first resource for mathematics

Winterberg’s conjectured breaking of the superluminal quantum correlations over large distances. (English) Zbl 1140.81326
Summary: We elaborate further on a hypothesis by Winterberg that turbulent fluctuations of the zero point field may lead to a breakdown of the superluminal quantum correlations over very large distances. A phenomenological model that was proposed by Winterberg to estimate the transition scale of the conjectured breakdown, does not lead to a distance that is large enough to be agreeable with recent experiments. We consider, but rule out, the possibility of a steeper slope in the energy spectrum of the turbulent fluctuations, due to compressibility, as a possible mechanism that may lead to an increased lower-bound for the transition scale. Instead, we argue that Winterberg overestimated the intensity of the ZPF turbulent fluctuations. We calculate a very generous corrected lower bound for the transition distance which is consistent with current experiments.
MSC:
81P68 Quantum computation
81P15 Quantum measurement theory, state operations, state preparations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allori, V., Zanghi, N.: What is Bohmian mechanics. Int. J. Theor. Phys. 43, 1743–1755 (2004) · doi:10.1023/B:IJTP.0000048817.79384.2a
[2] Amelino-Camelia, G.: Doubly-special relativity: first results and key open problems. Int. J. Mod. Phys. D 11, 1643–1669 (2002) · Zbl 1070.83500 · doi:10.1142/S021827180200302X
[3] Aspect, A.: Bell’s inequality test: more ideal than ever. Nature 398, 189–190 (1999) · doi:10.1038/18296
[4] Aspect, A.: To be or not to be local. Nature 446, 866–867 (2007) · doi:10.1038/446866a
[5] Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982) · doi:10.1103/PhysRevLett.49.1804
[6] Batchelor, G.: Kolmogorov’s theory of locally isotropic turbulence. Proc. Camb. Phil. Soc. 43, 533–559 (1947) · Zbl 0029.28405 · doi:10.1017/S0305004100023793
[7] Berndl, K., Durr, D., Zanghi, S.G.: Nonlocality, Lorentz invariance, and Bohmian quantum theory. Phys. Rev. A 53, 2062–2073 (1996) · doi:10.1103/PhysRevA.53.2062
[8] Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables I. Phys. Rev. 85, 166–179 (1952) · Zbl 0046.21004 · doi:10.1103/PhysRev.85.166
[9] Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables II. Phys. Rev. 85, 180–193 (1952) · Zbl 0046.21004 · doi:10.1103/PhysRev.85.180
[10] Bohm, D.: Proof that probability density approaches |\(\psi\)|2 in causal interpretation of the quantum theory. Phys. Rev. 89, 458–466 (1953) · Zbl 0051.20502 · doi:10.1103/PhysRev.89.458
[11] Bohm, D., Hiley, B.: The Undivided Universe. Routledge, London (1993)
[12] Bohm, D., Vigier, J.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954) · Zbl 0058.22905 · doi:10.1103/PhysRev.96.208
[13] Bohr, N.: Can quantum-mechanical description of physical reality be complete? Phys. Rev. 48, 696–702 (1935) · Zbl 0012.42701 · doi:10.1103/PhysRev.48.696
[14] Bonamente, M., Joy, M.K., LaRoque, S., Carlstrom, J., Reese, E., Dawson, K.: Determination of the cosmic distance scale from Sunyaev–Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25–54 (2006) · doi:10.1086/505291
[15] Bordag, M., Mohideen, U., Mostepanenko, V.: New developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001) · Zbl 0972.81212 · doi:10.1016/S0370-1573(01)00015-1
[16] Boyer, T.: Classical statistical thermodynamics and electromagnetic zero-point radiation. Phys. Rev. 186, 1304–1318 (1969) · doi:10.1103/PhysRev.186.1304
[17] Boyer, T.: Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev. 182, 1374–1383 (1969) · doi:10.1103/PhysRev.182.1374
[18] Clauser, J., Horne, M., Shimony, A., Holt, R.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969) · Zbl 1371.81014 · doi:10.1103/PhysRevLett.23.880
[19] Durr, D., Goldstein, S., Berndl, K., Zanghi, N.: Hypersurface Bohm-Dirac models. Phys. Rev. A 60, 2729–2736 (1999) · doi:10.1103/PhysRevA.60.2729
[20] Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be complete? Phys. Rev. 47, 777–780 (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[21] Eriksen, E., Gron, O.: Lorentz invariant radiation. Am. J. Phys. 55, 363–366 (1987) · doi:10.1119/1.15173
[22] Ferrero, M., Marshall, T., Santos, E.: Bell’s theorem: local realism versus quantum mechanics. Am. J. Phys. 58, 683–688 (1990) · doi:10.1119/1.16400
[23] Filk, T.: Relational interpretation of the wavefunction and a possible way around Bell’s theorem. Int. J. Theor. Phys. 45, 1205–1219 (2006) · Zbl 1102.81006 · doi:10.1007/s10773-006-9125-0
[24] Gibson, M.: Spectra of turbulence in a round jet. J. Fluid Mech. 15, 161–173 (1962) · Zbl 0109.43902 · doi:10.1017/S002211206300015X
[25] Gkioulekas, E.: On the elimination of the sweeping interactions from theories of hydrodynamic turbulence. Physica D 226, 151–172 (2007) · Zbl 1115.76034 · doi:10.1016/j.physd.2006.11.012
[26] Grangier, P.: Count them all. Nature 409, 774–775 (2001) · doi:10.1038/35057415
[27] Grant, H., Stewart, R., Moilliet, A.: Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–263 (1962) · Zbl 0101.43101 · doi:10.1017/S002211206200018X
[28] Groblacher, S., Paterek, T., Kaltenbaek, R., Brukner, S., Zukowski, M., Aspelmeyer, M., Zeilinger, A.: An experimental test of non-local realism. Nature 446, 871–875 (2007) · doi:10.1038/nature05677
[29] Holland, P.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993) · Zbl 0811.16020
[30] Kadomtsev, B., Petviashvili, V.: Acoustic turbulence. Dokl. Akad. Nauk SSSR 208, 794–796 (1973)
[31] Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15, L21–L24 (2003) · Zbl 1185.76191 · doi:10.1063/1.1539855
[32] Kolmogorov, A.: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941) (English translation published in Proc. Roy. Soc. Lond. A 434) · Zbl 0063.03292
[33] Kolmogorov, A.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941) (English translation published in Proc. Roy. Soc. Lond. A 434) · JFM 67.0850.06
[34] Laudisa, F.: The EPR argument in a relational interpretation of quantum mechanics. Found. Phys. Lett. 14, 119–132 (2001) · doi:10.1023/A:1012325503383
[35] L’vov, V., Procaccia, I.: Hydrodynamic turbulence: a 19th century problem with a challenge for the 21st century. In: Boratav, O., Eden, A., Erzan, A. (eds.) Turbulence Modeling and Vortex Dynamics, Proceedings of a Workshop, Instabul, Turkey. Springer, Berlin (1997)
[36] L’vov, V., Procaccia, I.: Analytic calculation of the anomalous exponents in turbulence: using the fusion rules to flush out a small parameter. Phys. Rev. E 62, 8037–8057 (2000) · doi:10.1103/PhysRevE.62.8037
[37] Markicic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Legre, M., Gisin, N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180 (2004), 502-1
[38] Moiseev, S., Tur, A., Yanovskii, V.: Spectra and expectation methods of turbulence in a compressible fluid. Sov. Phys. JETP 44, 556–561 (1976)
[39] Rowe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001) · doi:10.1038/35057215
[40] Santos, E.: Does quantum mechanics violate the Bell inequalities? Phys. Rev. Lett. 66, 1388–1390 (1991) · doi:10.1103/PhysRevLett.66.1388
[41] Santos, E.: Critical analysis of the empirical tests of local hidden variable theories. Phys. Rev. A 46, 3646–3656 (1992) · doi:10.1103/PhysRevA.46.3646
[42] Santos, E.: The failure to perform a loophole-free test of Bell’s inequality supports local realism. Found. Phys. 34, 1643–1673 (2004) · Zbl 1065.81030 · doi:10.1007/s10701-004-1308-z
[43] Santos, E.: Bell inequalities for a sensible family of local hidden variable theories testable at low detection efficiency. Eur. Phys. J. D 42, 501–509 (2007) · doi:10.1140/epjd/e2007-00133-6
[44] Shivamoggi, B.: Spectral laws for the compressible isotropic turbulence. Phys. Lett. A 166, 243–248 (1992) · doi:10.1016/0375-9601(92)90371-R
[45] Smerlak, M., Rovelli, C.: Relational EPR. Found. Phys. 37, 427–445 (2007) · Zbl 1118.81487 · doi:10.1007/s10701-007-9105-0
[46] Tapster, P., Rarity, J., Owens, P.: Violation of Bell’s inequality over 4 km of optical fiber. Phys. Rev. Lett. 73, 1922–1926 (1994) · doi:10.1103/PhysRevLett.73.1923
[47] Thew, R., Tanzilli, S., Tittel, W., Zbinden, H., Gisin, N.: Experimental investigation of the robustness of partially entangled qubits over 11 km. Phys. Rev. A 66, 304 (2002), 062
[48] Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H., Gisin, N.: Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57, 3229–3232 (1998) · doi:10.1103/PhysRevA.57.3229
[49] Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998) · doi:10.1103/PhysRevLett.81.3563
[50] Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998) · Zbl 0947.81013 · doi:10.1103/PhysRevLett.81.5039
[51] Whitaker, M.: The EPR paper and Bohr’s response: a re-assessment. Found. Phys. 34, 1305–1340 (2004) · Zbl 1059.81015 · doi:10.1023/B:FOOP.0000044095.69270.31
[52] Winterberg, F.: Lorentz invariance as a dynamic symmetry. Z. Naturforsch. 42a, 1428–1442 (1987)
[53] Winterberg, F.: Substratum approach to a unified theory of elementary particles. Z. Naturforsch. 43a, 1131–1150 (1988)
[54] Winterberg, F.: Wave function collapse as a real physical phenomenon caused by vacuum fluctuations near the Planck scale. Z. Naturforsch. 46a, 746–758 (1991)
[55] Winterberg, F.: Derivation of quantum mechanics from the Boltzmann equation for the Planck aether. Int. J. Theor. Phys. 34, 2145–2164 (1995) · Zbl 0835.53083 · doi:10.1007/BF00673076
[56] Winterberg, F.: Planck scale physics and Newton’s ultimate object conjecture. Z. Naturforsch. 52a, 183–209 (1997)
[57] Winterberg, F.: Conjectured breaking of the superluminal quantum correlations by turbulent fluctuations of the zero point vacuum field. Z. Naturforsch. 53a, 659–662 (1998)
[58] Winterberg, F.: Planck mass plasma vacuum conjecture. Z. Naturforsch. 58a, 231–267 (2003)
[59] Winterberg, F.: Planck mass plasma analog of string theory. Int. J. Theor. Phys. 45, 1107–1115 (2006) · Zbl 1125.83315 · doi:10.1007/s10773-006-9113-4
[60] Winterberg, F.: Personal communication (2007)
[61] Zeilinger, A.: Testing Bell’s inequalities with periodic switching. Phys. Lett. A 118, 1–2 (1986) · doi:10.1016/0375-9601(86)90520-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.