×

zbMATH — the first resource for mathematics

Optimal two-level conjoint designs with constant attributes in the profile sets. (English) Zbl 1203.62131
Summary: We propose a simple strategy to construct D-, A-, G- and V-optimal two-level designs for rating-based conjoint studies with large numbers of attributes. In order to simplify the rating task, the designs hold one or more attributes at a constant level in each profile set. Our approach combines orthogonal designs and binary incomplete block designs with equal replication. The designs are variance-balanced meaning that they yield an equal amount of information on each of the part-worths.

MSC:
62K05 Optimal statistical designs
62K10 Statistical block designs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abel, R.J.R.; Greig, M., BIBDs with small block size, (), 71-79, (Chapter I.2) · Zbl 0881.05019
[2] Brazier, J.; Roberts, J.; Deverill, M., The estimation of a preference-based measure of health from the SF-36, Journal of health economics, 21, 271-292, (2002)
[3] Clatworthy, W.H., 1973. Tables of Two-Associate-Class Partially Balanced Designs. Applied Mathematics Series 63. National Bureau of Standards (U.S.). · Zbl 0289.05017
[4] Cochran, W.G.; Cox, G.M., Experimental designs, (1957), Wiley New York · Zbl 0077.13205
[5] Cox, D.R., Planning of experiments, (1958), Wiley New York · Zbl 0084.15802
[6] Danaher, P.J., Using conjoint analysis to determine the relative importance of service attributes measured in customer satisfaction surveys, Journal of retailing, 73, 235-260, (1997)
[7] Goos, P., The optimal design of blocked and split-plot experiments, (2002), Springer New York · Zbl 1008.62068
[8] Goos, P., Optimal versus orthogonal and equivalent-estimation design of blocked and split-plot experiments, Statistica neerlandica, 60, 361-378, (2006) · Zbl 1108.62073
[9] Goos, P.; Vandebroek, M., Optimal split-plot designs, Journal of quality technology, 33, 436-450, (2001)
[10] Goos, P.; Vandebroek, M., D‐optimal split-plot designs with given numbers and sizes of whole plots, Technometrics, 45, 235-245, (2003)
[11] Goos, P.; Vandebroek, M., Outperforming completely randomized designs, Journal of quality technology, 36, 12-26, (2004)
[12] Grasshoff, U.; Grossmann, H.; Holling, H.; Schwabe, R., Optimal paired comparison designs for first-order interactions, Statistics, 37, 373-386, (2003) · Zbl 1039.62069
[13] Grasshoff, U.; Grossmann, H.; Holling, H.; Schwabe, R., Optimal designs for main effects in linear paired comparison models, Journal of statistical planning and inference, 126, 361-376, (2004) · Zbl 1065.62134
[14] Green, P.E., On the design of choice experiments involving multifactor alternatives, Journal of consumer research, 1, 61-68, (1974)
[15] Grossmann, H.; Holling, H.; Brocke, M.; Grasshoff, U.; Schwabe, R., On the empirical relevance of optimal designs for the measurement of preferences, (), 45-65 · Zbl 1390.62149
[16] Grossmann, H.; Holling, H.; Schwabe, R., Advances in optimum experimental design for conjoint analysis and discrete choice models, (), 93-117
[17] Kessels, R.; Goos, P.; Vandebroek, M., Optimal designs for conjoint experiments, Computational statistics and data analysis, 52, 2369-2387, (2008) · Zbl 1452.62581
[18] Kessels, R., Goos, P., Vandebroek, M., 2006. Optimal two-level conjoint designs for large numbers of attributes. Technical Report 0615, Faculty of Business and Economics, Katholieke Universiteit Leuven, 39pp. · Zbl 1203.62131
[19] Mathon, R.; Rosa, A., 2-(v, k, λ) designs of small order, (), 25-58, (Chapter I.1) · Zbl 1113.05016
[20] Pullman, M.E.; Moore, W.L.; Wardell, D.G., A comparison of quality function deployment and conjoint analysis in new product design, Journal of product innovation management, 19, 354-364, (2002)
[21] Schwabe, R., Grasshoff, U., Grossmann, H., Holling, H., 2003. Optimal 2^K paired comparison designs for partial profiles. In: Stulajter, F., Wimmer, G. (Eds.), PROBASTAT2002, Proceedings of the Fourth International Conference on Mathematical Statistics, Smolenice 2002. Tatra Mountains Mathematical Publications, vol. 26, pp. 79-86. · Zbl 1154.62356
[22] Shah, K.R.; Sinha, B.K., Theory of optimal designs, (1989), Springer-Verlag New York · Zbl 0691.62067
[23] Sinha, K., Website of partially balanced incomplete block designs: \(\langle\)http://sites.google.com/site/kishoresinha/partiallybalanceddesigns〉.
[24] Street, D.J.; Bunch, D.S.; Moore, B.J., Optimal designs for 2^k paired comparison experiments, Communications in statistics—theory and methods, 30, 2149-2171, (2001) · Zbl 0993.62061
[25] Street, D.J.; Burgess, L., Optimal and near-optimal pairs for the estimation of effects in 2-level choice experiments, Journal of statistical planning and inference, 118, 185-199, (2004) · Zbl 1031.62059
[26] Street, D.J.; Street, A.P., Partially balanced incomplete block designs, (), 419-423, (Chapter IV.35) · Zbl 0847.05010
[27] Wu, C.F.J.; Hamada, M., Experiments: planning, analysis, and parameter design optimization, (2000), Wiley New York · Zbl 0964.62065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.