×

zbMATH — the first resource for mathematics

\(CPT\) groups of higher spin fields. (English) Zbl 1255.81176
Summary: \(CPT\) groups of higher spin fields are defined in the framework of automorphism groups of Clifford algebras associated with the complex representations of the proper orthochronous Lorentz group. Higher spin fields are understood as the fields on the Poincaré group which describe orientable (extended) objects. A general method for construction of \(CPT\) groups of the fields of any spin is given. \(CPT\) groups of the fields of spin-1/2, spin-1 and spin-3/2 are considered in detail. \(CPT\) groups of the fields of tensor type are discussed. It is shown that tensor fields correspond to particles of the same spin with different masses.

MSC:
81R25 Spinor and twistor methods applied to problems in quantum theory
22E25 Nilpotent and solvable Lie groups
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Akhiezer, A.I., Berestetskii, V.B.: Quantum Electrodynamics. Wiley, New York (1965)
[2] Altaisky, M.V.: Quantum field theory without divergences. Phys. Rev. D 81, 125003 (2010). arXiv:1002.2566 [hep-th] · Zbl 1235.83091 · doi:10.1103/PhysRevD.81.125003
[3] Arodź, H.: Metric tensors, Lagrangian formalism and Abelian gauge field on the Poincaré group. Acta Phys. Pol. B 7, 177–190 (1976)
[4] Biedenharn, L.C.: Braden, H.W., Truini, P., van Dam, H.: Relativistic wavefunctions on spinor spaces. J. Phys. A, Math. Gen. 21, 3593–3610 (1988) · Zbl 0682.53087 · doi:10.1088/0305-4470/21/18/014
[5] Boyer, C.P., Fleming, G.N.: Quantum field theory on a seven-dimensional homogeneous space of the Poincaré group. J. Math. Phys. 15, 1007–1024 (1974) · doi:10.1063/1.1666749
[6] Braden, H.W.: N-dimensional spinors: Their properties in terms of finite groups. J. Math. Phys. 26, 613–620 (1985) · Zbl 0575.15012 · doi:10.1063/1.526597
[7] Brauer, R., Weyl, H.: Spinors in n dimensions. Am. J. Math. 57, 425–449 (1935) · JFM 61.1025.06 · doi:10.2307/2371218
[8] de Broglie, L.: Theorie Generale des Particules a Spin (Methode de Fusion). Gauthier-Villars, Paris (1943)
[9] Buchbinder, I.L., Gitman, D.M., Shelepin, A.L.: Discrete symmetries as automorphisms of proper Poincaré group. Int. J. Theor. Phys. 41, 753–790 (2002). arXiv:hep-th/0010035 · Zbl 0996.81030 · doi:10.1023/A:1015244830241
[10] Cabo, A., Cervantes, D.B., Rojas, Perez: H., Socolovsky, M.: Remark on charge conjugation in the non relativistic limit. Int. J. Theor. Phys. 45, 1965–1976 (2006). arXiv:hep-th/0504223 · Zbl 1106.81029 · doi:10.1007/s10773-006-9166-4
[11] Carballo, Perez: B., Socolovsky, M.: Charge Conjugation from Space-Time Inversion. Int. J. Theor. Phys. 48, 1712–1716 (2009). arXiv:0811.0842 [hep-th] · Zbl 1171.83301 · doi:10.1007/s10773-009-9945-9
[12] Carballo Perez, B., Socolovsky, M.: Irreducible representations of the CPT groups in QED (2009). arXiv:0906.2381 [math-ph] · Zbl 1219.81154
[13] Carballo Perez, B., Socolovsky, M.: The CPT group of the spin-3/2 field (2010). arXiv:1001.0751 [hep-ph] · Zbl 1261.81070
[14] Chevalley, C.: The Construction and Study of Certain Important Algebras. Publications of Mathematical Society of Japan, vol. 1, Herald Printing, Tokyo (1955) · Zbl 0065.01901
[15] Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras, Spinor Structures. Kluwer Acad., Dordrecht (1991) · Zbl 0701.53003
[16] Dabrowski, L.: Group Actions on Spinors. Bibliopolis, Naples (1988) · Zbl 0703.53001
[17] Drechsler, W.: Geometro-stochastically quantized fields with internal spin variables. J. Math. Phys. 38, 5531–5558 (1997). arXiv:gr-qc/9610046 · Zbl 0892.58089 · doi:10.1063/1.532150
[18] Finkelstein, D.: Internal structure of spinning particles. Phys. Rev. 100, 924–931 (1955) · Zbl 0065.44305 · doi:10.1103/PhysRev.100.924
[19] Fierz, M., Pauli, W.: On relativistic wave equations of particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 173, 211–232 (1939) · JFM 65.1532.01 · doi:10.1098/rspa.1939.0140
[20] Gel’fand, I.M., Yaglom, A.M.: General relativistic-invariant equations and infinite-dimensional representations of the Lorentz group. Zh. Èksp. Teor. Fiz. 18, 703–733 (1948)
[21] Gel’fand, I.M., Minlos, R.A., Shapiro, Z.Ya.: Representations of the Rotation and Lorentz Groups and their Applications. Pergamon Press, Oxford (1963)
[22] Ginzburg, V.L., Tamm, I.E.: On the theory of spin. Zh. Èksp. Teor. Fiz. 17, 227–237 (1947)
[23] Gitman, D.M., Shelepin, A.L.: Fields on the Poincaré group: arbitrary spin description and relativistic wave equations. Int. J. Theor. Phys. 40(3), 603–684 (2001). arXiv:hep-th/0003146 · Zbl 1006.83001 · doi:10.1023/A:1004118431439
[24] Gitman, D.M., Shelepin, A.L.: Field on the Poincaré group and quantum description of orientable objects. Eur. Phys. J. C 61, 111–139 (2009). arXiv:0901.2537 [hep-th] · Zbl 1189.81089 · doi:10.1140/epjc/s10052-009-0954-x
[25] Gitman, D.M., Shelepin, A.L.: Classification of quantum relativistic orientable objects. Phys. Scr. 83, 015103 (2011). arXiv:1001.5290 [hep-th] · Zbl 1217.81150 · doi:10.1088/0031-8949/83/01/015103
[26] Grandpeix, J.-Y., Lurçat, F.: Particle description of zero energy vacuum. Found. Phys. 32, 109–158 (2002). arXiv:hep-th/0106229 · doi:10.1023/A:1013852931455
[27] Kaiser, G.: Quantum physics, relativity, and complex spacetime: towards a new synthesis (2009). arXiv:0910.0352 [math-ph] · Zbl 0709.53061
[28] Kihlberg, A.: Fields on a homogeneous space of the Poincaré group. Ann. Inst. Henri Poincaré 13, 57–76 (1970)
[29] Kuo, T.K.: Internal-symmetry groups and their automorphisms. Phys. Rev. D 4, 3620–3637 (1971) · doi:10.1103/PhysRevD.4.3620
[30] Kuzenko, S.M., Lyakhovich, S.L., Segal, A.Yu.: A geometric model of the arbitrary spin massive particle. Int. J. Mod. Phys. A 10, 1529–1552 (1995). arXiv:hep-th/9403196 · Zbl 0985.81564 · doi:10.1142/S0217751X95000735
[31] Lipschitz, R.: Untersuchungen über die Summen von Quadraten. Max Cohen und Sohn, Bonn (1886) · JFM 18.0152.02
[32] Lounesto, P.: Clifford Algebras and Spinors. Cambridge Univ. Press, Cambridge (2001) · Zbl 0973.15022
[33] Lurçat, F.: Quantum field theory and the dynamical role of spin. Physics 1, 95 (1964)
[34] Lyakhovich, S.L., Segal, A.Yu., Sharapov, A.A.: Universal model of a D=4 spinning particles. Phys. Rev. D 54, 5223–5238 (1996). arXiv:hep-th/9603174 · doi:10.1103/PhysRevD.54.5223
[35] Michel, L.: Invariance in quantum mechanics and group extension. In: Group Theoretical Concepts and Methods in Elementary Particle Physics, pp. 135–200. Gordon & Breach, New York (1964).
[36] Naimark, M.A.: Linear Representations of the Lorentz Group. Pergamon, London (1964) · Zbl 0137.31703
[37] Planat, M.: Three-qubit entangled embeddings of CPT and Dirac groups within E 8 Weyl group. Int. J. Theor. Phys. 49, 1044–1054 (2010). arXiv:0906.1063 [quant-ph] · Zbl 1190.81029 · doi:10.1007/s10773-010-0283-8
[38] Porteous, I.R.: Clifford Algebras and Classical Groups. Cambridge University Press, Cambridge (1995) · Zbl 0855.15019
[39] Rashevskii, P.K.: The theory of spinors. Usp. Mat. Nauk 10, 3–110 (1955). English translation in Amer. Math. Soc. Transl. (Ser. 2) 6, 1 (1957)
[40] Rashevskii, P.K.: About mathematical foundations of quantum electrodynamics. Usp. Mat. Nauk 13, 3–110 (1958)
[41] Rumer, Yu.B., Fet, A.I.: Group Theory and Quantized Fields. Nauka, Moscow (1977) (in Russian)
[42] Ryder, L.: Quantum Field Theory. Cambridge University Press, Cambridge (1985) · Zbl 0555.46038
[43] Salingaros, N.: The relationship between finite groups and Clifford algebras. J. Math. Phys. 25, 738–742 (1984) · Zbl 0552.20008 · doi:10.1063/1.526260
[44] Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Harper & Row, New York (1961)
[45] Segal, I.E., Zhou, Z.: Convergence of nonlinear massive quantum field theory in the Einstein universe. Ann. Phys. 218(2), 279–292 (1992) · Zbl 0875.53017 · doi:10.1016/0003-4916(92)90088-4
[46] Segal, I.E., Zhou, Z.: Convergence of quantum electrodynamics in a curved deformation of Minkowski space. Ann. Phys. 232(1), 61–87 (1994) · Zbl 0801.53069 · doi:10.1006/aphy.1994.1050
[47] Shirokov, Yu.M.: Group theoretical analysis of the foundations of relativistic quantum mechanics. IV, V. Zh. Èksp. Teor. Fiz. 34, 717–724 (1958)
[48] Shirokov, Yu.M.: Zh. Èksp. Teor. Fiz. 36, 879–888 (1959)
[49] Shirokov, Yu.M.: Spacial and time reflections in the relativistic theory. Zh. Èksp. Teor. Fiz. 38, 140–150 (1960)
[50] Silagadze, Z.K.: On the internal parity of antiparticles. Sov. J. Nucl. Phys. 55, 392–396 (1992)
[51] Socolovsky, M.: The CPT group of the Dirac field. Int. J. Theor. Phys. 43, 1941–1967 (2004). arXiv:math-ph/0404038 · Zbl 1073.81033 · doi:10.1023/B:IJTP.0000049003.90851.60
[52] Toller, M.: Free quantum fields on the Poincaré group. J. Math. Phys. 37, 2694–2730 (1996). arXiv:gr-qc/9602031 · Zbl 0862.22018 · doi:10.1063/1.531537
[53] Varlamov, V.V.: Fundamental automorphisms of Clifford algebras and an extension of Dabrowski Pin groups. Hadron. J. 22, 497–535 (1999). arXiv:math-ph/9904038 · Zbl 1041.81538
[54] Varlamov, V.V.: Discrete symmetries and Clifford algebras. Int. J. Theor. Phys. 40(4), 769–805 (2001). arXiv:math-ph/0009026 · Zbl 0984.81172 · doi:10.1023/A:1004122826609
[55] Varlamov, V.V.: General solutions of relativistic wave equations. Int. J. Theor. Phys. 42(3), 583–633 (2003). arXiv:math-ph/0209036 · Zbl 1027.83003 · doi:10.1023/A:1024498001488
[56] Varlamov, V.V.: Group Theoretical Interpretation of the CPT-theorem. In: Benton, C.V. (ed.) Mathematical Physics Research at the Cutting Edge, pp. 51–100. Nova Science, New York (2004). arXiv:math-ph/0306034
[57] Varlamov, V.V.: Relativistic wavefunctions on the Poincaré group. J. Phys. A, Math. Gen. 37, 5467–5476 (2004). arXiv:math-ph/0308038 · Zbl 1062.81085 · doi:10.1088/0305-4470/37/20/014
[58] Varlamov, V.V.: Universal coverings of orthogonal groups. Adv. Appl. Clifford Algebras 14, 81–168 (2004). arXiv:math-ph/0405040 · Zbl 1100.20502 · doi:10.1007/s00006-004-0006-4
[59] Varlamov, V.V.: The CPT group in the de Sitter space. Ann. Fond. Louis Broglie 29, 969–987 (2004). arXiv:math-ph/0406060 · Zbl 1329.81228
[60] Varlamov, V.V.: Maxwell field on the Poincaré group. Int. J. Mod. Phys. A 20(17), 4095–4112 (2005). arXiv:math-ph/0310051 · Zbl 1137.81339 · doi:10.1142/S0217751X05025048
[61] Varlamov, V.V.: CPT groups for spinor field in de Sitter space. Phys. Lett. B 631, 187–191 (2005). arXiv:math-ph/0508050 · Zbl 1247.81196 · doi:10.1016/j.physletb.2005.10.008
[62] Varlamov, V.V.: General solutions of relativistic wave equations II: arbitrary spin chains. Int. J. Theor. Phys. 46(4), 741–805 (2007). arXiv:math-ph/0503058 · Zbl 1116.83003 · doi:10.1007/s10773-006-9077-4
[63] van der Waerden, B.L.: Die Gruppentheoretische Methode in der Quantenmechanik. Springer, Berlin (1932) · Zbl 0004.08905
[64] Wigner, E.P.: Unitary representations of the inhomogeneous lorentz group including reflections. In: Gürsey, F. (ed.) Group Theoretical Concepts and Methods in Elementary Particle Physics. Gordon & Breach, New York (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.