Hobus, Pascal; Saal, Jürgen Stokes and Navier-Stokes equations subject to partial slip on uniform \(C^{2,1}\)-domains in \(L_q\)-spaces. (English) Zbl 07330806 J. Differ. Equations 284, 374-432 (2021). MSC: 76D03 76D05 76D07 35Q30 PDF BibTeX XML Cite \textit{P. Hobus} and \textit{J. Saal}, J. Differ. Equations 284, 374--432 (2021; Zbl 07330806) Full Text: DOI
Köhne, Matthias; Saal, Jürgen; Westermann, Laura Optimal Sobolev regularity for the Stokes equations on a 2D wedge domain. (English) Zbl 07307513 Math. Ann. 379, No. 1-2, 377-413 (2021). MSC: 35Q30 76D03 35K67 76D07 35K65 35B65 PDF BibTeX XML Cite \textit{M. Köhne} et al., Math. Ann. 379, No. 1--2, 377--413 (2021; Zbl 07307513) Full Text: DOI
Batty, Charles; Gomilko, Alexander; Tomilov, Yuri A Besov algebra calculus for generators of operator semigroups and related norm-estimates. (English) Zbl 07307504 Math. Ann. 379, No. 1-2, 23-93 (2021). MSC: 47A60 30H25 46E15 47D03 PDF BibTeX XML Cite \textit{C. Batty} et al., Math. Ann. 379, No. 1--2, 23--93 (2021; Zbl 07307504) Full Text: DOI
Ondreját, Martin; Veraar, Mark On temporal regularity of stochastic convolutions in \(2\)-smooth Banach spaces. (English. French summary) Zbl 07310506 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 3, 1792-1808 (2020). MSC: 60G17 46E35 60J65 60H15 PDF BibTeX XML Cite \textit{M. Ondreját} and \textit{M. Veraar}, Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 3, 1792--1808 (2020; Zbl 07310506) Full Text: DOI Euclid
Lasiecka, Irena; Priyasad, Buddhika; Triggiani, Roberto Uniform stabilization of Boussinesq systems in critical \(\mathbf{L}^q \)-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls. (English) Zbl 1452.35229 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 4071-4117 (2020). MSC: 35Q93 35B35 35K40 93C20 93B52 76D05 80A17 PDF BibTeX XML Cite \textit{I. Lasiecka} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 4071--4117 (2020; Zbl 1452.35229) Full Text: DOI
Hieber, Matthias; Prüss, Jan Bounded \(H^\infty\)-calculus for a class of nonlocal operators: the bidomain operator in the \(L_q\)-setting. (English) Zbl 1450.35152 Math. Ann. 378, No. 3-4, 1095-1127 (2020). MSC: 35K90 42B20 92C35 47D06 35B65 PDF BibTeX XML Cite \textit{M. Hieber} and \textit{J. Prüss}, Math. Ann. 378, No. 3--4, 1095--1127 (2020; Zbl 1450.35152) Full Text: DOI
Roidos, Nikolaos Heinz-Kato inequality in Banach spaces. (English) Zbl 07261149 J. Anal. 28, No. 3, 841-846 (2020). MSC: 47A30 47A63 PDF BibTeX XML Cite \textit{N. Roidos}, J. Anal. 28, No. 3, 841--846 (2020; Zbl 07261149) Full Text: DOI
Muratbekov, Mussakan Baipakbaevich; Bayandiyev, Yerik Nurlanovich Existence and maximal regularity of solutions in \(L_2(\mathbb{R}^2)\) for a hyperbolic type differential equation with quickly growing coefficients. (English) Zbl 07241006 Eurasian Math. J. 11, No. 1, 95-100 (2020). MSC: 35M10 PDF BibTeX XML Cite \textit{M. B. Muratbekov} and \textit{Y. N. Bayandiyev}, Eurasian Math. J. 11, No. 1, 95--100 (2020; Zbl 07241006) Full Text: DOI MNR
Fackler, Stephan; Hytönen, Tuomas P.; Lindemulder, Nick Weighted estimates for operator-valued Fourier multipliers. (English) Zbl 1445.42005 Collect. Math. 71, No. 3, 511-548 (2020). MSC: 42B15 42B25 42B20 PDF BibTeX XML Cite \textit{S. Fackler} et al., Collect. Math. 71, No. 3, 511--548 (2020; Zbl 1445.42005) Full Text: DOI
Hieber, Matthias Analysis of viscous fluid flows: an approach by evolution equations. (English) Zbl 1442.35338 Galdi, Giovanni P. (ed.) et al., Mathematical analysis of the Navier-Stokes equations. Lecture notes given at the CIME school on mathematical analysis of the Navier-Stokes equations: foundations and overview of basic open problems, Cetraro, Italy, September 4–8, 2017. Cham: Springer. Lect. Notes Math. 2254, 1-146 (2020). MSC: 35Q35 76A15 35Q86 86A05 35D35 35B65 35K59 35R35 PDF BibTeX XML Cite \textit{M. Hieber}, Lect. Notes Math. 2254, 1--146 (2020; Zbl 1442.35338) Full Text: DOI
Zhang, Xin The \(\mathcal{R}\)-bounded operator families arising from the study of the barotropic compressible flows with free surface. (English) Zbl 1440.35251 J. Differ. Equations 269, No. 9, 7059-7105 (2020). MSC: 35Q30 76N10 35B65 35R35 PDF BibTeX XML Cite \textit{X. Zhang}, J. Differ. Equations 269, No. 9, 7059--7105 (2020; Zbl 1440.35251) Full Text: DOI
Carbonaro, Andrea; Dragičević, Oliver Bilinear embedding for divergence-form operators with complex coefficients on irregular domains. (English) Zbl 1444.35089 Calc. Var. Partial Differ. Equ. 59, No. 3, Paper No. 104, 36 p. (2020). Reviewer: Michael Perelmuter (Kyïv) MSC: 35K15 35R15 35J25 47D06 PDF BibTeX XML Cite \textit{A. Carbonaro} and \textit{O. Dragičević}, Calc. Var. Partial Differ. Equ. 59, No. 3, Paper No. 104, 36 p. (2020; Zbl 1444.35089) Full Text: DOI
Lindemulder, Nick; Veraar, Mark The heat equation with rough boundary conditions and holomorphic functional calculus. (English) Zbl 1448.35283 J. Differ. Equations 269, No. 7, 5832-5899 (2020). MSC: 35K20 47A60 46B70 46E35 46E40 PDF BibTeX XML Cite \textit{N. Lindemulder} and \textit{M. Veraar}, J. Differ. Equations 269, No. 7, 5832--5899 (2020; Zbl 1448.35283) Full Text: DOI
Amansag, Ahmed; Bounit, Hamid; Driouich, Abderrahim; Hadd, Said On the maximal regularity for perturbed autonomous and non-autonomous evolution equations. (English) Zbl 1437.35436 J. Evol. Equ. 20, No. 1, 165-190 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K90 34G10 35B65 35R11 PDF BibTeX XML Cite \textit{A. Amansag} et al., J. Evol. Equ. 20, No. 1, 165--190 (2020; Zbl 1437.35436) Full Text: DOI
Lindemulder, Nick Maximal regularity with weights for parabolic problems with inhomogeneous boundary conditions. (English) Zbl 1439.35228 J. Evol. Equ. 20, No. 1, 59-108 (2020). Reviewer: Raymond Johnson (Columbia) MSC: 35K52 46E35 46E40 42B15 PDF BibTeX XML Cite \textit{N. Lindemulder}, J. Evol. Equ. 20, No. 1, 59--108 (2020; Zbl 1439.35228) Full Text: DOI
Pyatkov, S. G. Solvability of initial boundary value problems for non-autonomous evolution equations. (English) Zbl 07189574 J. Evol. Equ. 20, No. 1, 39-58 (2020). MSC: 35K90 47D06 34G10 PDF BibTeX XML Cite \textit{S. G. Pyatkov}, J. Evol. Equ. 20, No. 1, 39--58 (2020; Zbl 07189574) Full Text: DOI
Arhancet, Cédric Dilations of Markovian semigroups of Fourier multipliers on locally compact groups. (English) Zbl 1443.47008 Proc. Am. Math. Soc. 148, No. 6, 2551-2563 (2020). Reviewer: Jinghao Huang (Sydney) MSC: 47A20 47D03 46L51 47D07 PDF BibTeX XML Cite \textit{C. Arhancet}, Proc. Am. Math. Soc. 148, No. 6, 2551--2563 (2020; Zbl 1443.47008) Full Text: DOI
Aparicio, Rafael; Keyantuo, Valentin \(L^p\)-maximal regularity for a class of degenerate integro-differential equations with infinite delay in Banach spaces. (English) Zbl 1446.45012 J. Fourier Anal. Appl. 26, No. 2, Paper No. 34, 39 p. (2020). MSC: 45N05 45K05 45D05 42A45 47D99 46B09 PDF BibTeX XML Cite \textit{R. Aparicio} and \textit{V. Keyantuo}, J. Fourier Anal. Appl. 26, No. 2, Paper No. 34, 39 p. (2020; Zbl 1446.45012) Full Text: DOI
Goldstein, Gisèle Ruiz; Goldstein, Jerome A.; Guidetti, Davide; Romanelli, Silvia Maximal regularity, analytic semigroups, and dynamic and general Wentzell boundary conditions with a diffusion term on the boundary. (English) Zbl 07170000 Ann. Mat. Pura Appl. (4) 199, No. 1, 127-146 (2020). MSC: 35B65 35K51 47D06 PDF BibTeX XML Cite \textit{G. R. Goldstein} et al., Ann. Mat. Pura Appl. (4) 199, No. 1, 127--146 (2020; Zbl 07170000) Full Text: DOI
Saito, Hirokazu On the maximal \(L_p-L_q\) regularity for a compressible fluid model of Korteweg type on general domains. (English) Zbl 1428.76181 J. Differ. Equations 268, No. 6, 2802-2851 (2020). MSC: 76N10 35L65 35M10 35Q53 35Q35 PDF BibTeX XML Cite \textit{H. Saito}, J. Differ. Equations 268, No. 6, 2802--2851 (2020; Zbl 1428.76181) Full Text: DOI
Agresti, Antonio; Veraar, Mark Stability properties of stochastic maximal \(L^p\)-regularity. (English) Zbl 07138404 J. Math. Anal. Appl. 482, No. 2, Article ID 123553, 35 p. (2020). MSC: 60 34 PDF BibTeX XML Cite \textit{A. Agresti} and \textit{M. Veraar}, J. Math. Anal. Appl. 482, No. 2, Article ID 123553, 35 p. (2020; Zbl 07138404) Full Text: DOI arXiv
Langer, Ulrich; Matculevich, Svetlana; Repin, Sergey Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems. (English) Zbl 1443.65185 Comput. Math. Appl. 78, No. 8, 2641-2671 (2019). MSC: 65M50 PDF BibTeX XML Cite \textit{U. Langer} et al., Comput. Math. Appl. 78, No. 8, 2641--2671 (2019; Zbl 1443.65185) Full Text: DOI
Saito, Hirokazu Compressible fluid model of Korteweg type with free boundary condition: model problem. (English) Zbl 1441.35199 Funkc. Ekvacioj, Ser. Int. 62, No. 3, 337-386 (2019). MSC: 35Q35 76N10 35R35 PDF BibTeX XML Cite \textit{H. Saito}, Funkc. Ekvacioj, Ser. Int. 62, No. 3, 337--386 (2019; Zbl 1441.35199) Full Text: DOI
Arnold, Loris; Le Merdy, Christian New counterexamples on Ritt operators, sectorial operators and \(R\)-boundedness. (English) Zbl 07133758 Bull. Aust. Math. Soc. 100, No. 3, 498-506 (2019). MSC: 47D03 46B15 47A99 PDF BibTeX XML Cite \textit{L. Arnold} and \textit{C. Le Merdy}, Bull. Aust. Math. Soc. 100, No. 3, 498--506 (2019; Zbl 07133758) Full Text: DOI arXiv
Denk, Robert; Shibata, Yoshihiro Generation of semigroups for the thermoelastic plate equation with free boundary conditions. (English) Zbl 1423.35158 Evol. Equ. Control Theory 8, No. 2, 301-313 (2019). MSC: 35K35 35J40 42B15 PDF BibTeX XML Cite \textit{R. Denk} and \textit{Y. Shibata}, Evol. Equ. Control Theory 8, No. 2, 301--313 (2019; Zbl 1423.35158) Full Text: DOI arXiv
Prüss, Jan On some classes of elliptic systems with fractional boundary relaxation. (English) Zbl 1421.35138 J. Integral Equations Appl. 31, No. 1, 85-104 (2019). MSC: 35J70 35K65 PDF BibTeX XML Cite \textit{J. Prüss}, J. Integral Equations Appl. 31, No. 1, 85--104 (2019; Zbl 1421.35138) Full Text: DOI Euclid
Pyatkov, S. G. On some inverse problems for first order operator-differential equations. (English. Russian original) Zbl 1419.35252 Sib. Math. J. 60, No. 1, 140-147 (2019); translation from Sib. Mat. Zh. 60, No. 1, 183-193 (2019). MSC: 35R30 PDF BibTeX XML Cite \textit{S. G. Pyatkov}, Sib. Math. J. 60, No. 1, 140--147 (2019; Zbl 1419.35252); translation from Sib. Mat. Zh. 60, No. 1, 183--193 (2019) Full Text: DOI
Amenta, Alex; Lorist, Emiel; Veraar, Mark Fourier multipliers in Banach function spaces with UMD concavifications. (English) Zbl 1425.42014 Trans. Am. Math. Soc. 371, No. 7, 4837-4868 (2019). Reviewer: Shuichi Sato (Kanazawa) MSC: 42B15 42B25 46E30 47A56 PDF BibTeX XML Cite \textit{A. Amenta} et al., Trans. Am. Math. Soc. 371, No. 7, 4837--4868 (2019; Zbl 1425.42014) Full Text: DOI
Ferguson, Timothy; Mei, Tao; Simanek, Brian \(H^{\infty}\)-calculus for semigroup generators on BMO. (English) Zbl 07044295 Adv. Math. 347, 408-441 (2019). MSC: 47 46 PDF BibTeX XML Cite \textit{T. Ferguson} et al., Adv. Math. 347, 408--441 (2019; Zbl 07044295) Full Text: DOI
Hobus, Pascal; Saal, Jürgen Triebel-Lizorkin-Lorentz spaces and the Navier-Stokes equations. (English) Zbl 1414.42030 Z. Anal. Anwend. 38, No. 1, 41-72 (2019). Reviewer: Hans Triebel (Jena) MSC: 42B35 46E35 76D05 35Q35 PDF BibTeX XML Cite \textit{P. Hobus} and \textit{J. Saal}, Z. Anal. Anwend. 38, No. 1, 41--72 (2019; Zbl 1414.42030) Full Text: DOI arXiv
Arhancet, Cédric Dilations of semigroups on von Neumann algebras and noncommutative \(L^{p}\)-spaces. (English) Zbl 07026816 J. Funct. Anal. 276, No. 7, 2279-2314 (2019). MSC: 47A20 47D03 46L51 47D07 PDF BibTeX XML Cite \textit{C. Arhancet}, J. Funct. Anal. 276, No. 7, 2279--2314 (2019; Zbl 07026816) Full Text: DOI
Hornung, Luca Quasilinear parabolic stochastic evolution equations via maximal \(L^p\)-regularity. (English) Zbl 1433.60055 Potential Anal. 50, No. 2, 279-326 (2019). Reviewer: Feng-Yu Wang (Swansea) MSC: 60H15 60H30 35K59 65J08 58D25 76A05 35Q35 35K57 PDF BibTeX XML Cite \textit{L. Hornung}, Potential Anal. 50, No. 2, 279--326 (2019; Zbl 1433.60055) Full Text: DOI arXiv
Li, Buyang Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra. (English) Zbl 1403.65071 Math. Comput. 88, No. 315, 1-44 (2019). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 35K20 65M12 35B65 35B50 35B35 35K05 PDF BibTeX XML Cite \textit{B. Li}, Math. Comput. 88, No. 315, 1--44 (2019; Zbl 1403.65071) Full Text: DOI arXiv
Bonifacius, Lucas; Neitzel, Ira Second order optimality conditions for optimal control of quasilinear parabolic equations. (English) Zbl 1405.35095 Math. Control Relat. Fields 8, No. 1, 1-34 (2018). MSC: 35K59 49K20 90C48 PDF BibTeX XML Cite \textit{L. Bonifacius} and \textit{I. Neitzel}, Math. Control Relat. Fields 8, No. 1, 1--34 (2018; Zbl 1405.35095) Full Text: DOI
van Neerven, Jan; Versendaal, Rik \(L^p\)-analysis of the Hodge-Dirac operator associated with Witten Laplacians on complete Riemannian manifolds. (English) Zbl 07002664 J. Geom. Anal. 28, No. 4, 3109-3138 (2018). MSC: 47A60 58A10 58J35 58J60 PDF BibTeX XML Cite \textit{J. van Neerven} and \textit{R. Versendaal}, J. Geom. Anal. 28, No. 4, 3109--3138 (2018; Zbl 07002664) Full Text: DOI arXiv
Prüss, Jan \(H^\infty\)-calculus for generalized Stokes operators. (English) Zbl 1401.35294 J. Evol. Equ. 18, No. 3, 1543-1574 (2018). MSC: 35Q92 92C35 35Q35 PDF BibTeX XML Cite \textit{J. Prüss}, J. Evol. Equ. 18, No. 3, 1543--1574 (2018; Zbl 1401.35294) Full Text: DOI
Schrohe, E.; Seiler, J. Bounded \(H_\infty\)-calculus for cone differential operators. (English) Zbl 06968631 J. Evol. Equ. 18, No. 3, 1395-1425 (2018). MSC: 47 35 34 PDF BibTeX XML Cite \textit{E. Schrohe} and \textit{J. Seiler}, J. Evol. Equ. 18, No. 3, 1395--1425 (2018; Zbl 06968631) Full Text: DOI
Babutzka, Jens; Kunstmann, Peer Christian \(L^p\)-Helmholtz decomposition on periodic domains and applications to Navier-Stokes equations. (English) Zbl 1444.76042 J. Math. Fluid Mech. 20, No. 3, 1093-1121 (2018). MSC: 76D05 76D03 46E30 PDF BibTeX XML Cite \textit{J. Babutzka} and \textit{P. C. Kunstmann}, J. Math. Fluid Mech. 20, No. 3, 1093--1121 (2018; Zbl 1444.76042) Full Text: DOI
Eilinghoff, Johannes; Schnaubelt, Roland Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. (English) Zbl 1401.78013 Discrete Contin. Dyn. Syst. 38, No. 11, 5685-5709 (2018). MSC: 78M20 65M12 35Q61 47D06 65J10 PDF BibTeX XML Cite \textit{J. Eilinghoff} and \textit{R. Schnaubelt}, Discrete Contin. Dyn. Syst. 38, No. 11, 5685--5709 (2018; Zbl 1401.78013) Full Text: DOI
Maity, Debayan; Tucsnak, Marius \(L^p\)-\(L^q\) maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems. (English) Zbl 1401.76042 Danchin, Raphaël (ed.) et al., Mathematical analysis in fluid mechanics: selected recent results. International conference on vorticity, rotation and symmetry (IV) – complex fluids and the issue of regularity, CIRM, Luminy, Marseille, France, May 8–12, 2017. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3646-9/pbk; 978-1-4704-4807-3/ebook). Contemporary Mathematics 710, 175-201 (2018). MSC: 76D03 35Q30 76N10 PDF BibTeX XML Cite \textit{D. Maity} and \textit{M. Tucsnak}, Contemp. Math. 710, 175--201 (2018; Zbl 1401.76042) Full Text: DOI arXiv
Frey, Dorothee; McIntosh, Alan; Portal, Pierre Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in \(L^p\). (English) Zbl 06946522 J. Anal. Math. 134, No. 2, 399-453 (2018). MSC: 47A60 42B PDF BibTeX XML Cite \textit{D. Frey} et al., J. Anal. Math. 134, No. 2, 399--453 (2018; Zbl 06946522) Full Text: DOI arXiv
Rozendaal, Jan; Veraar, Mark Stability theory for semigroups using \((L^{p},L^{q})\) Fourier multipliers. (English) Zbl 1437.47020 J. Funct. Anal. 275, No. 10, 2845-2894 (2018). Reviewer: Kaïs Ammari (Monastir) MSC: 47D06 34D05 35B40 42B15 46B20 PDF BibTeX XML Cite \textit{J. Rozendaal} and \textit{M. Veraar}, J. Funct. Anal. 275, No. 10, 2845--2894 (2018; Zbl 1437.47020) Full Text: DOI
Kunstmann, Peer C.; Li, Buyang; Lubich, Christian Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity. (English) Zbl 1410.65347 Found. Comput. Math. 18, No. 5, 1109-1130 (2018). Reviewer: Kai Schneider (Marseille) MSC: 65M12 65M15 65L06 35K55 PDF BibTeX XML Cite \textit{P. C. Kunstmann} et al., Found. Comput. Math. 18, No. 5, 1109--1130 (2018; Zbl 1410.65347) Full Text: DOI arXiv
Tolksdorf, Patrick \(\mathcal {R}\)-sectoriality of higher-order elliptic systems on general bounded domains. (English) Zbl 06932106 J. Evol. Equ. 18, No. 2, 323-349 (2018). MSC: 30 35 42 PDF BibTeX XML Cite \textit{P. Tolksdorf}, J. Evol. Equ. 18, No. 2, 323--349 (2018; Zbl 06932106) Full Text: DOI arXiv
Roidos, Nikolaos Closedness and invertibility for the sum of two closed operators. (English) Zbl 06902453 Adv. Oper. Theory 3, No. 3, 582-605 (2018). MSC: 47A60 47A05 47A10 35K90 PDF BibTeX XML Cite \textit{N. Roidos}, Adv. Oper. Theory 3, No. 3, 582--605 (2018; Zbl 06902453) Full Text: DOI Euclid arXiv
Kriegler, Christoph; Weis, Lutz Spectral multiplier theorems via \(H^\infty\) calculus and \(R\)-bounds. (English) Zbl 1402.42009 Math. Z. 289, No. 1-2, 405-444 (2018). Reviewer: Oscar Blasco (Valencia) MSC: 42A45 47A60 PDF BibTeX XML Cite \textit{C. Kriegler} and \textit{L. Weis}, Math. Z. 289, No. 1--2, 405--444 (2018; Zbl 1402.42009) Full Text: DOI
Chill, Ralph; Król, Sebastian Weighted inequalities for singular integral operators on the half-line. (English) Zbl 1398.42010 Stud. Math. 243, No. 2, 171-206 (2018). MSC: 42B20 PDF BibTeX XML Cite \textit{R. Chill} and \textit{S. Król}, Stud. Math. 243, No. 2, 171--206 (2018; Zbl 1398.42010) Full Text: DOI
Zhang, Qinghua Quasilinear evolution equations in \(L_\mu^P\)-spaces with lower regular initial data. (English) Zbl 06868703 J. Funct. Spaces 2018, Article ID 2569080, 11 p. (2018). MSC: 47D06 PDF BibTeX XML Cite \textit{Q. Zhang}, J. Funct. Spaces 2018, Article ID 2569080, 11 p. (2018; Zbl 06868703) Full Text: DOI
Kazashi, Yoshihito Discrete maximal regularity of an implicit Euler-Maruyama scheme with non-uniform time discretisation for a class of stochastic partial differential equations. (English) Zbl 1390.60236 Electron. Commun. Probab. 23, Paper No. 29, 14 p. (2018). MSC: 60H15 60H35 PDF BibTeX XML Cite \textit{Y. Kazashi}, Electron. Commun. Probab. 23, Paper No. 29, 14 p. (2018; Zbl 1390.60236) Full Text: DOI Euclid arXiv
Kemmochi, Tomoya; Saito, Norikazu Discrete maximal regularity and the finite element method for parabolic equations. (English) Zbl 1448.65164 Numer. Math. 138, No. 4, 905-937 (2018). MSC: 65M60 35K91 65M12 65M15 35B65 65J10 PDF BibTeX XML Cite \textit{T. Kemmochi} and \textit{N. Saito}, Numer. Math. 138, No. 4, 905--937 (2018; Zbl 1448.65164) Full Text: DOI arXiv
Dong, Hongjie; Gallarati, Chiara Higher-order elliptic and parabolic equations with VMO assumptions and general boundary conditions. (English) Zbl 1387.35079 J. Funct. Anal. 274, No. 7, 1993-2038 (2018). Reviewer: Lubomira Softova (Salerno) MSC: 35B65 35J40 35B45 35K35 PDF BibTeX XML Cite \textit{H. Dong} and \textit{C. Gallarati}, J. Funct. Anal. 274, No. 7, 1993--2038 (2018; Zbl 1387.35079) Full Text: DOI arXiv
Jin, Bangti; Li, Buyang; Zhou, Zhi Discrete maximal regularity of time-stepping schemes for fractional evolution equations. (English) Zbl 1421.65025 Numer. Math. 138, No. 1, 101-131 (2018). Reviewer: Johannes Schropp (Konstanz) MSC: 65M60 65M12 34A08 PDF BibTeX XML Cite \textit{B. Jin} et al., Numer. Math. 138, No. 1, 101--131 (2018; Zbl 1421.65025) Full Text: DOI arXiv
Jin, Bangti; Li, Buyang; Zhou, Zhi Numerical analysis of nonlinear subdiffusion equations. (English) Zbl 1422.65228 SIAM J. Numer. Anal. 56, No. 1, 1-23 (2018). MSC: 65M15 65M60 65M12 45K05 PDF BibTeX XML Cite \textit{B. Jin} et al., SIAM J. Numer. Anal. 56, No. 1, 1--23 (2018; Zbl 1422.65228) Full Text: DOI arXiv
Lasiecka, Irena; Pokojovy, Michael; Wan, Xiang Global existence and exponential stability for a nonlinear thermoelastic Kirchhoff-Love plate. (English) Zbl 1377.35025 Nonlinear Anal., Real World Appl. 38, 184-221 (2017). MSC: 35B40 74K20 74F05 35G61 PDF BibTeX XML Cite \textit{I. Lasiecka} et al., Nonlinear Anal., Real World Appl. 38, 184--221 (2017; Zbl 1377.35025) Full Text: DOI arXiv
Arhancet, Cédric; Fackler, Stephan; Le Merdy, Christian Isometric dilations and \(H^\infty \) calculus for bounded analytic semigroups and Ritt operators. (English) Zbl 1369.47017 Trans. Am. Math. Soc. 369, No. 10, 6899-6933 (2017). MSC: 47A60 47D06 47A20 22D12 PDF BibTeX XML Cite \textit{C. Arhancet} et al., Trans. Am. Math. Soc. 369, No. 10, 6899--6933 (2017; Zbl 1369.47017) Full Text: DOI
Giga, Yoshikazu; Gries, Mathis; Hieber, Matthias; Hussein, Amru; Kashiwabara, Takahito Bounded \(H^{\infty }\)-calculus for the hydrostatic Stokes operator on \(L^p\)-spaces and applications. (English) Zbl 06740482 Proc. Am. Math. Soc. 145, No. 9, 3865-3876 (2017). MSC: 35Q35 35B65 47D06 76D03 PDF BibTeX XML Cite \textit{Y. Giga} et al., Proc. Am. Math. Soc. 145, No. 9, 3865--3876 (2017; Zbl 06740482) Full Text: DOI
Fackler, Stephan Non-autonomous maximal regularity for forms given by elliptic operators of bounded variation. (English) Zbl 1367.35053 J. Differ. Equations 263, No. 6, 3533-3549 (2017). MSC: 35B65 47A07 35K90 PDF BibTeX XML Cite \textit{S. Fackler}, J. Differ. Equations 263, No. 6, 3533--3549 (2017; Zbl 1367.35053) Full Text: DOI arXiv
Schnaubelt, Roland; Veraar, Mark Regularity of stochastic Volterra equations by functional calculus methods. (English) Zbl 1364.60086 J. Evol. Equ. 17, No. 1, 523-536 (2017). MSC: 60H20 PDF BibTeX XML Cite \textit{R. Schnaubelt} and \textit{M. Veraar}, J. Evol. Equ. 17, No. 1, 523--536 (2017; Zbl 1364.60086) Full Text: DOI arXiv
Kunstmann, Peer Christian; Weis, Lutz New criteria for the \(H^\infty\)-calculus and the Stokes operator on bounded Lipschitz domains. (English) Zbl 1396.42003 J. Evol. Equ. 17, No. 1, 387-409 (2017). MSC: 42B30 35Q35 PDF BibTeX XML Cite \textit{P. C. Kunstmann} and \textit{L. Weis}, J. Evol. Equ. 17, No. 1, 387--409 (2017; Zbl 1396.42003) Full Text: DOI
Gallarati, Chiara; Veraar, Mark Maximal regularity for non-autonomous equations with measurable dependence on time. (English) Zbl 1373.35063 Potential Anal. 46, No. 3, 527-567 (2017). Reviewer: Raymond Johnson (Columbia) MSC: 35B65 42B20 42B37 34G10 47D06 35K90 35K59 PDF BibTeX XML Cite \textit{C. Gallarati} and \textit{M. Veraar}, Potential Anal. 46, No. 3, 527--567 (2017; Zbl 1373.35063) Full Text: DOI arXiv
Cong, Wenting; Liu, Jian-Guo Uniform \(L^{\infty}\) boundedness for a degenerate parabolic-parabolic Keller-Segel model. (English) Zbl 1360.35106 Discrete Contin. Dyn. Syst., Ser. B 22, No. 2, 307-338 (2017). MSC: 35K65 35K59 92C17 35Q92 PDF BibTeX XML Cite \textit{W. Cong} and \textit{J.-G. Liu}, Discrete Contin. Dyn. Syst., Ser. B 22, No. 2, 307--338 (2017; Zbl 1360.35106) Full Text: DOI
Fackler, Stephan J.-L. Lions’ problem concerning maximal regularity of equations governed by non-autonomous forms. (English) Zbl 1375.47033 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 3, 699-709 (2017). MSC: 47D06 47A07 PDF BibTeX XML Cite \textit{S. Fackler}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 3, 699--709 (2017; Zbl 1375.47033) Full Text: DOI arXiv
Akrivis, Georgios; Li, Buyang; Lubich, Christian Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. (English) Zbl 1361.65053 Math. Comput. 86, No. 306, 1527-1552 (2017). MSC: 65M06 65M15 35K59 PDF BibTeX XML Cite \textit{G. Akrivis} et al., Math. Comput. 86, No. 306, 1527--1552 (2017; Zbl 1361.65053) Full Text: DOI arXiv
Prüss, Jan On second-order elliptic operators with complete first-order boundary degeneration and strong outward drift. (English) Zbl 1366.35097 Arch. Math. 108, No. 3, 301-311 (2017). MSC: 35K65 35J70 35K90 35B65 PDF BibTeX XML Cite \textit{J. Prüss}, Arch. Math. 108, No. 3, 301--311 (2017; Zbl 1366.35097) Full Text: DOI
Li, Buyang; Sun, Weiwei Maximal regularity of fully discrete finite element solutions of parabolic equations. (English) Zbl 1359.65207 SIAM J. Numer. Anal. 55, No. 2, 521-542 (2017). MSC: 65M60 35K20 65M15 PDF BibTeX XML Cite \textit{B. Li} and \textit{W. Sun}, SIAM J. Numer. Anal. 55, No. 2, 521--542 (2017; Zbl 1359.65207) Full Text: DOI
Li, Buyang; Sun, Weiwei Maximal \(L^p\) analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. (English) Zbl 1359.65206 Math. Comput. 86, No. 305, 1071-1102 (2017). MSC: 65M60 65M15 35K20 PDF BibTeX XML Cite \textit{B. Li} and \textit{W. Sun}, Math. Comput. 86, No. 305, 1071--1102 (2017; Zbl 1359.65206) Full Text: DOI
Batty, Charles; Gomilko, Alexander; Tomilov, Yuri Resolvent representations for functions of sectorial operators. (English) Zbl 1450.47011 Adv. Math. 308, 896-940 (2017). Reviewer: Khristo N. Boyadzhiev (Ada) MSC: 47B12 47A10 30C45 47D03 47A60 30E20 PDF BibTeX XML Cite \textit{C. Batty} et al., Adv. Math. 308, 896--940 (2017; Zbl 1450.47011) Full Text: DOI arXiv
Deleaval, Luc; Kriegler, Christoph Dunkl spectral multipliers with values in UMD lattices. (English) Zbl 1371.42011 J. Funct. Anal. 272, No. 5, 2132-2175 (2017). Reviewer: Pierre Portal (Canberra) MSC: 42B15 42B25 47A60 PDF BibTeX XML Cite \textit{L. Deleaval} and \textit{C. Kriegler}, J. Funct. Anal. 272, No. 5, 2132--2175 (2017; Zbl 1371.42011) Full Text: DOI
Lindemulder, Nick Difference norms for vector-valued Bessel potential spaces with an application to pointwise multipliers. (English) Zbl 1365.46031 J. Funct. Anal. 272, No. 4, 1435-1476 (2017). Reviewer: George O. Okikiolu (London) MSC: 46E40 42B15 46B09 46E30 46E35 PDF BibTeX XML Cite \textit{N. Lindemulder}, J. Funct. Anal. 272, No. 4, 1435--1476 (2017; Zbl 1365.46031) Full Text: DOI arXiv
Kim, Ildoo; Kim, Kyeong-Hun; Lim, Sungbin An \(L_{q}(L_{p})\)-theory for the time-fractional evolution equations with variable coefficients. (English) Zbl 1361.35196 Adv. Math. 306, 123-176 (2017). MSC: 35R11 35B45 35B65 26A33 PDF BibTeX XML Cite \textit{I. Kim} et al., Adv. Math. 306, 123--176 (2017; Zbl 1361.35196) Full Text: DOI arXiv
Bothe, Dieter; Köhne, Matthias; Maier, Siegfried; Saal, Jürgen Global strong solutions for a class of heterogeneous catalysis models. (English) Zbl 1355.35092 J. Math. Anal. Appl. 445, No. 1, 677-709 (2017). MSC: 35K40 35K57 35A01 35Q92 PDF BibTeX XML Cite \textit{D. Bothe} et al., J. Math. Anal. Appl. 445, No. 1, 677--709 (2017; Zbl 1355.35092) Full Text: DOI
Brunnhuber, Rainer; Meyer, Stefan Optimal regularity and exponential stability for the Blackstock-Crighton equation in \(L_{p}\)-spaces with Dirichlet and Neumann boundary conditions. (English) Zbl 1365.35015 J. Evol. Equ. 16, No. 4, 945-981 (2016). MSC: 35G25 35Q35 35B30 35B35 35B40 35B45 35B65 PDF BibTeX XML Cite \textit{R. Brunnhuber} and \textit{S. Meyer}, J. Evol. Equ. 16, No. 4, 945--981 (2016; Zbl 1365.35015) Full Text: DOI arXiv
Prado, Humberto; Reyes, Enrique G. Nonlinear evolution equations with infinitely many derivatives. (English) Zbl 06675404 Complex Anal. Oper. Theory 10, No. 7, 1577-1590 (2016). MSC: 47 PDF BibTeX XML Cite \textit{H. Prado} and \textit{E. G. Reyes}, Complex Anal. Oper. Theory 10, No. 7, 1577--1590 (2016; Zbl 06675404) Full Text: DOI
Kovács, Balázs; Li, Buyang; Lubich, Christian A-stable time discretizations preserve maximal parabolic regularity. (English) Zbl 1355.65122 SIAM J. Numer. Anal. 54, No. 6, 3600-3624 (2016). MSC: 65M20 35K55 65L06 65M12 65M06 PDF BibTeX XML Cite \textit{B. Kovács} et al., SIAM J. Numer. Anal. 54, No. 6, 3600--3624 (2016; Zbl 1355.65122) Full Text: DOI
Bernicot, Frédéric; Coulhon, Thierry; Frey, Dorothee Sobolev algebras through heat kernel estimates. (Algèbres de Sobolev via des estimations du noyau de la chaleur.) (English. French summary) Zbl 1364.46029 J. Éc. Polytech., Math. 3, 99-161 (2016). MSC: 46E35 42B25 30L99 PDF BibTeX XML Cite \textit{F. Bernicot} et al., J. Éc. Polytech., Math. 3, 99--161 (2016; Zbl 1364.46029) Full Text: DOI arXiv
Kemmochi, Tomoya Discrete maximal regularity for abstract Cauchy problems. (English) Zbl 1359.65082 Stud. Math. 234, No. 3, 241-263 (2016). Reviewer: Michael Jung (Dresden) MSC: 65J08 65M06 34G10 65L05 65L12 PDF BibTeX XML Cite \textit{T. Kemmochi}, Stud. Math. 234, No. 3, 241--263 (2016; Zbl 1359.65082) Full Text: DOI
van Neerven, Jan; Portal, Pierre Finite speed of propagation and off-diagonal bounds for Ornstein-Uhlenbeck operators in infinite dimensions. (English) Zbl 1356.47048 Ann. Mat. Pura Appl. (4) 195, No. 6, 1889-1915 (2016). MSC: 47D03 47A60 47F05 60H15 42B37 35L05 PDF BibTeX XML Cite \textit{J. van Neerven} and \textit{P. Portal}, Ann. Mat. Pura Appl. (4) 195, No. 6, 1889--1915 (2016; Zbl 1356.47048) Full Text: DOI
Roidos, Nikolaos; Schrohe, Elmar Existence and maximal \(L^p\)-regularity of solutions for the porous medium equation on manifolds with conical singularities. (English) Zbl 1353.58012 Commun. Partial Differ. Equations 41, No. 9, 1441-1471 (2016). MSC: 58J35 35J70 35K59 58J40 35B65 35B40 PDF BibTeX XML Cite \textit{N. Roidos} and \textit{E. Schrohe}, Commun. Partial Differ. Equations 41, No. 9, 1441--1471 (2016; Zbl 1353.58012) Full Text: DOI arXiv
Hänninen, Timo S.; Hytönen, Tuomas P. Operator-valued dyadic shifts and the \(T(1)\) theorem. (English) Zbl 1345.42013 Monatsh. Math. 180, No. 2, 213-253 (2016). Reviewer: Sibei Yang (Lanzhou) MSC: 42B20 46E40 60G42 60G46 PDF BibTeX XML Cite \textit{T. S. Hänninen} and \textit{T. P. Hytönen}, Monatsh. Math. 180, No. 2, 213--253 (2016; Zbl 1345.42013) Full Text: DOI arXiv
Kwapień, Stanislaw; Veraar, Mark; Weis, Lutz \(R\)-boundedness versus \(\gamma\)-boundedness. (English) Zbl 1357.46016 Ark. Mat. 54, No. 1, 125-145 (2016). Reviewer: Oscar Blasco (Valencia) MSC: 46B28 46B07 46B09 PDF BibTeX XML Cite \textit{S. Kwapień} et al., Ark. Mat. 54, No. 1, 125--145 (2016; Zbl 1357.46016) Full Text: DOI arXiv
Schwenninger, Felix L. On measuring unboundedness of the \(H^\infty\)-calculus for generators of analytic semigroups. (English) Zbl 1342.47023 J. Funct. Anal. 271, No. 1, 49-84 (2016). MSC: 47A60 47D06 PDF BibTeX XML Cite \textit{F. L. Schwenninger}, J. Funct. Anal. 271, No. 1, 49--84 (2016; Zbl 1342.47023) Full Text: DOI arXiv
Zhang, Qinghua; Li, Gang On the \(X_{\theta(\cdot)}\)-valued function space: definition, property and applications. (English) Zbl 1412.46047 J. Math. Anal. Appl. 440, No. 1, 48-64 (2016). MSC: 46E40 47J35 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{G. Li}, J. Math. Anal. Appl. 440, No. 1, 48--64 (2016; Zbl 1412.46047) Full Text: DOI
Schwenninger, Felix L. Functional calculus estimates for Tadmor-Ritt operators. (English) Zbl 1383.47002 J. Math. Anal. Appl. 439, No. 1, 103-124 (2016). MSC: 47A60 PDF BibTeX XML Cite \textit{F. L. Schwenninger}, J. Math. Anal. Appl. 439, No. 1, 103--124 (2016; Zbl 1383.47002) Full Text: DOI arXiv
Fackler, Stephan A short counterexample to the inverse generator problem on non-Hilbertian reflexive \(L^p\)-spaces. (English) Zbl 1359.47038 Arch. Math. 106, No. 4, 383-389 (2016). Reviewer: Khristo N. Boyadzhiev (Ada) MSC: 47D06 PDF BibTeX XML Cite \textit{S. Fackler}, Arch. Math. 106, No. 4, 383--389 (2016; Zbl 1359.47038) Full Text: DOI arXiv
Castro, Alejandro J.; Hytönen, Tuomas P. Bounds for partial derivatives: necessity of UMD and sharp constants. (English) Zbl 1339.35012 Math. Z. 282, No. 3-4, 635-650 (2016). MSC: 35A23 42B15 60G46 PDF BibTeX XML Cite \textit{A. J. Castro} and \textit{T. P. Hytönen}, Math. Z. 282, No. 3--4, 635--650 (2016; Zbl 1339.35012) Full Text: DOI arXiv
Bailleul, I.; Bernicot, F. Heat semigroup and singular PDEs. With an appendix by F. Bernicot and D. Frey. (English) Zbl 1416.35303 J. Funct. Anal. 270, No. 9, 3344-3452 (2016). MSC: 35R60 35K08 35K55 35K67 47H20 60H15 PDF BibTeX XML Cite \textit{I. Bailleul} and \textit{F. Bernicot}, J. Funct. Anal. 270, No. 9, 3344--3452 (2016; Zbl 1416.35303) Full Text: DOI
Badea, Catalin; Seifert, David Ritt operators and convergence in the method of alternating projections. (English) Zbl 1336.41013 J. Approx. Theory 205, 133-148 (2016). Reviewer: Vladimir V. Peller (East Lansing) MSC: 41A65 47J25 47A10 47A12 47A25 PDF BibTeX XML Cite \textit{C. Badea} and \textit{D. Seifert}, J. Approx. Theory 205, 133--148 (2016; Zbl 1336.41013) Full Text: DOI
Fackler, Stephan Maximal regularity: positive counterexamples on UMD-Banach lattices and exact intervals for the negative solution of the extrapolation problem. (English) Zbl 1337.47057 Proc. Am. Math. Soc. 144, No. 5, 2015-2028 (2016). MSC: 47D06 35B65 46B15 PDF BibTeX XML Cite \textit{S. Fackler}, Proc. Am. Math. Soc. 144, No. 5, 2015--2028 (2016; Zbl 1337.47057) Full Text: DOI arXiv
Ashyralyev, A.; Pastor, J.; Piskarev, S.; Yurtsever, H. A. Second order equations in functional spaces: qualitative and discrete well-posedness. (English) Zbl 1433.34081 Abstr. Appl. Anal. 2015, Article ID 948321, 63 p. (2015). MSC: 34G10 34-02 35R20 65L12 PDF BibTeX XML Cite \textit{A. Ashyralyev} et al., Abstr. Appl. Anal. 2015, Article ID 948321, 63 p. (2015; Zbl 1433.34081) Full Text: DOI
Sauer, Jonas An extrapolation theorem in non-Euclidean geometries and its application to partial differential equations. (English) Zbl 1381.42031 J. Elliptic Parabol. Equ. 1, No. 2, 403-418 (2015). MSC: 42B25 43A15 43A70 76D07 PDF BibTeX XML Cite \textit{J. Sauer}, J. Elliptic Parabol. Equ. 1, No. 2, 403--418 (2015; Zbl 1381.42031) Full Text: DOI
Kunstmann, Peer Christian A new interpolation approach to spaces of Triebel-Lizorkin type. (English) Zbl 1346.46018 Ill. J. Math. 59, No. 1, 1-19 (2015). Reviewer: Hans Triebel (Jena) MSC: 46B70 47A60 46E35 42B25 PDF BibTeX XML Cite \textit{P. C. Kunstmann}, Ill. J. Math. 59, No. 1, 1--19 (2015; Zbl 1346.46018) Full Text: Euclid
Sauer, Jonas Weighted resolvent estimates for the spatially periodic Stokes equations. (English) Zbl 1330.35342 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61, No. 2, 333-354 (2015). MSC: 35Q35 76D07 35B10 PDF BibTeX XML Cite \textit{J. Sauer}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61, No. 2, 333--354 (2015; Zbl 1330.35342) Full Text: DOI
Haak, Bernhard H.; Ouhabaz, El Maati Maximal regularity for non-autonomous evolution equations. (English) Zbl 1327.35220 Math. Ann. 363, No. 3-4, 1117-1145 (2015). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K90 35K45 47D06 PDF BibTeX XML Cite \textit{B. H. Haak} and \textit{E. M. Ouhabaz}, Math. Ann. 363, No. 3--4, 1117--1145 (2015; Zbl 1327.35220) Full Text: DOI
Veraar, Mark; Weis, Lutz Estimates for vector-valued holomorphic functions and Littlewood-Paley-Stein theory. (English) Zbl 1342.46037 Stud. Math. 228, No. 1, 73-99 (2015). Reviewer: Pierre Portal (Canberra) MSC: 46E35 42B35 46B09 47A60 PDF BibTeX XML Cite \textit{M. Veraar} and \textit{L. Weis}, Stud. Math. 228, No. 1, 73--99 (2015; Zbl 1342.46037) Full Text: DOI arXiv
Li, Buyang Maximum-norm stability and maximal \(L^p\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. (English) Zbl 1351.65063 Numer. Math. 131, No. 3, 489-516 (2015). Reviewer: Yanlai Chen (North Dartmouth) MSC: 65M12 65M60 35K20 65M20 65M15 PDF BibTeX XML Cite \textit{B. Li}, Numer. Math. 131, No. 3, 489--516 (2015; Zbl 1351.65063) Full Text: DOI arXiv
Gomilko, Alexander; Tomilov, Yuri On subordination of holomorphic semigroups. (English) Zbl 1319.47034 Adv. Math. 283, 155-194 (2015). MSC: 47D03 47A60 46N30 26A48 PDF BibTeX XML Cite \textit{A. Gomilko} and \textit{Y. Tomilov}, Adv. Math. 283, 155--194 (2015; Zbl 1319.47034) Full Text: DOI arXiv Backlinks: MO
van Neerven, Jan; Veraar, Mark; Weis, Lutz On the \(R\)-boundedness of stochastic convolution operators. (English) Zbl 1328.60132 Positivity 19, No. 2, 355-384 (2015). Reviewer: Martin Ondreját (Praha) MSC: 60H05 42B25 46E30 60H15 PDF BibTeX XML Cite \textit{J. van Neerven} et al., Positivity 19, No. 2, 355--384 (2015; Zbl 1328.60132) Full Text: DOI arXiv
Disser, Karoline; Meyries, Martin; Rehberg, Joachim A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces. (English) Zbl 1327.35138 J. Math. Anal. Appl. 430, No. 2, 1102-1123 (2015). MSC: 35K20 35B30 35K65 PDF BibTeX XML Cite \textit{K. Disser} et al., J. Math. Anal. Appl. 430, No. 2, 1102--1123 (2015; Zbl 1327.35138) Full Text: DOI arXiv
Saito, Hirokazu On the \(\mathcal{R}\)-boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer. (English) Zbl 1321.35141 Math. Methods Appl. Sci. 38, No. 9, 1888-1925 (2015). Reviewer: Piotr Biler (Wroclaw) MSC: 35Q30 76D07 PDF BibTeX XML Cite \textit{H. Saito}, Math. Methods Appl. Sci. 38, No. 9, 1888--1925 (2015; Zbl 1321.35141) Full Text: DOI
van Neerven, Jan; Veraar, Mark; Weis, Lutz Maximal \(\gamma\)-regularity. (English) Zbl 1366.35012 J. Evol. Equ. 15, No. 2, 361-402 (2015). Reviewer: Jin Liang (Shanghai) MSC: 35B65 60H30 35K90 35R60 PDF BibTeX XML Cite \textit{J. van Neerven} et al., J. Evol. Equ. 15, No. 2, 361--402 (2015; Zbl 1366.35012) Full Text: DOI arXiv