Hadjian, Armin Three weak solutions for a class of Neumann boundary value systems involving the \((p_1,\dots,p_n)\)-Laplacian. (English) Zbl 1431.35013 Bol. Soc. Parana. Mat. (3) 38, No. 5, 175-185 (2020). MSC: 35D30 35B38 35J50 PDF BibTeX XML Cite \textit{A. Hadjian}, Bol. Soc. Parana. Mat. (3) 38, No. 5, 175--185 (2020; Zbl 1431.35013) Full Text: Link
Ahmed, Ahmed; Akdim, Youssef; Touzani, Abdelfettah Infinitely many solutions for an elliptic Neumann problem in weighted variable exponent Sobolev spaces. (English) Zbl 07308380 J. Nonlinear Evol. Equ. Appl. 2019, 15-34 (2019). MSC: 35J20 35J60 47J10 46E35 PDF BibTeX XML Cite \textit{A. Ahmed} et al., J. Nonlinear Evol. Equ. Appl. 2019, 15--34 (2019; Zbl 07308380) Full Text: Link
El Attar, Abderrahim Nonlinear elliptic problems involving the anisotropic \((p(\vec{x}),q(\vec{x}))\) system. (English) Zbl 1353.35145 Asia Pac. J. Math. 3, No. 1, 48-63 (2016). Reviewer: Marek Galewski (Łódź) MSC: 35J35 35J60 35J66 35D30 PDF BibTeX XML Cite \textit{A. El Attar}, Asia Pac. J. Math. 3, No. 1, 48--63 (2016; Zbl 1353.35145) Full Text: Link
Ahmed, Ahmed; Hjiaj, Hassane; Touzani, Abdelfattah Existence of infinitely many weak solutions for a Neumann elliptic equations involving the \(\vec {p}(x)\)-Laplacian operator. (English) Zbl 1331.35109 Rend. Circ. Mat. Palermo (2) 64, No. 3, 459-473 (2015). Reviewer: Leszek Gasiński (Kraków) MSC: 35J20 35J60 35D30 PDF BibTeX XML Cite \textit{A. Ahmed} et al., Rend. Circ. Mat. Palermo (2) 64, No. 3, 459--473 (2015; Zbl 1331.35109) Full Text: DOI
El Manouni, S.; Alaoui, M. Kbiri A result on elliptic systems with Neumann conditions via Ricceri’s three critical points theorem. (English) Zbl 1170.35387 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 5-6, 2343-2348 (2009). MSC: 35J55 35J50 35J70 35B45 35B65 PDF BibTeX XML Cite \textit{S. El Manouni} and \textit{M. K. Alaoui}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 5--6, 2343--2348 (2009; Zbl 1170.35387) Full Text: DOI
Fan, Xianling; Deng, Shao-Gao Remarks on Ricceri’s variational principle and applications to the \(p(x)\)-Laplacian equations. (English) Zbl 1134.35035 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 11, 3064-3075 (2007). MSC: 35J20 35J65 35J70 PDF BibTeX XML Cite \textit{X. Fan} and \textit{S.-G. Deng}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 11, 3064--3075 (2007; Zbl 1134.35035) Full Text: DOI
Fan, Xianling; Ji, Chao Existence of infinitely many solutions for a Neumann problem involving the \(p(x)\)-Laplacian. (English) Zbl 1157.35040 J. Math. Anal. Appl. 334, No. 1, 248-260 (2007). Reviewer: Messoud A. Efendiev (Berlin) MSC: 35J60 35J20 47J30 49J45 PDF BibTeX XML Cite \textit{X. Fan} and \textit{C. Ji}, J. Math. Anal. Appl. 334, No. 1, 248--260 (2007; Zbl 1157.35040) Full Text: DOI
Anello, Giovanni Existence of two local minima for functionals on reflexive Banach spaces. (English) Zbl 1065.49014 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 61, No. 7, 1179-1187 (2005). MSC: 49J53 34B15 47J30 49J27 PDF BibTeX XML Cite \textit{G. Anello}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 61, No. 7, 1179--1187 (2005; Zbl 1065.49014) Full Text: DOI
Faraci, Francesca Multiplicity results for a Neumann problem involving the \(p\)-Laplacian. (English) Zbl 1092.35033 J. Math. Anal. Appl. 277, No. 1, 180-189 (2003). MSC: 35J60 35J25 35J50 PDF BibTeX XML Cite \textit{F. Faraci}, J. Math. Anal. Appl. 277, No. 1, 180--189 (2003; Zbl 1092.35033) Full Text: DOI