Shokooh, Saeid; Graef, John R. Existence and multiplicity results for non-homogeneous Neumann problems in Orlicz-Sobolev spaces. (English) Zbl 1447.35151 Rend. Circ. Mat. Palermo (2) 69, No. 2, 339-351 (2020). Reviewer: Giovanni Anello (Messina) MSC: 35J60 35J25 58E05 PDF BibTeX XML Cite \textit{S. Shokooh} and \textit{J. R. Graef}, Rend. Circ. Mat. Palermo (2) 69, No. 2, 339--351 (2020; Zbl 1447.35151) Full Text: DOI
El Attar, Abderrahim Nonlinear elliptic problems involving the anisotropic \((p(\vec{x}),q(\vec{x}))\) system. (English) Zbl 1353.35145 Asia Pac. J. Math. 3, No. 1, 48-63 (2016). Reviewer: Marek Galewski (Łódź) MSC: 35J35 35J60 35J66 35D30 PDF BibTeX XML Cite \textit{A. El Attar}, Asia Pac. J. Math. 3, No. 1, 48--63 (2016; Zbl 1353.35145) Full Text: Link
Ahmed, Ahmed; Hjiaj, Hassane; Touzani, Abdelfattah Existence of infinitely many weak solutions for a Neumann elliptic equations involving the \(\vec {p}(x)\)-Laplacian operator. (English) Zbl 1331.35109 Rend. Circ. Mat. Palermo (2) 64, No. 3, 459-473 (2015). Reviewer: Leszek Gasiński (Kraków) MSC: 35J20 35J60 35D30 PDF BibTeX XML Cite \textit{A. Ahmed} et al., Rend. Circ. Mat. Palermo (2) 64, No. 3, 459--473 (2015; Zbl 1331.35109) Full Text: DOI
Yin, Honghui; Wen, Jing Three solutions for a class of quasilinear elliptic equation involving the \(p\)-\(q\)-Laplace operator. (English) Zbl 1284.35159 Math. Methods Appl. Sci. 37, No. 3, 428-434 (2014). MSC: 35J25 58E05 PDF BibTeX XML Cite \textit{H. Yin} and \textit{J. Wen}, Math. Methods Appl. Sci. 37, No. 3, 428--434 (2014; Zbl 1284.35159) Full Text: DOI
Yin, Honghui Existence of three solutions for a Neumann problem involving the \(p(x)\)-Laplace operator. (English) Zbl 1235.35122 Math. Methods Appl. Sci. 35, No. 3, 307-313 (2012). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J60 35D30 35J91 58E05 PDF BibTeX XML Cite \textit{H. Yin}, Math. Methods Appl. Sci. 35, No. 3, 307--313 (2012; Zbl 1235.35122) Full Text: DOI
Mashiyev, R. A. Three solutions to a Neumann problem for elliptic equations with variable exponent. (English) Zbl 1300.35050 Arab. J. Sci. Eng. 36, No. 8, 1559-1567 (2011). MSC: 35J66 35D30 35J70 PDF BibTeX XML Cite \textit{R. A. Mashiyev}, Arab. J. Sci. Eng. 36, No. 8, 1559--1567 (2011; Zbl 1300.35050) Full Text: DOI
El Manouni, Said Multiplicity results of \(p(x)\)-Laplacian systems with Neumann conditions. (English) Zbl 1262.35101 Ric. Mat. 60, No. 2, 249-262 (2011). MSC: 35J50 35J60 PDF BibTeX XML Cite \textit{S. El Manouni}, Ric. Mat. 60, No. 2, 249--262 (2011; Zbl 1262.35101) Full Text: DOI
El Manouni, S.; Alaoui, M. Kbiri A result on elliptic systems with Neumann conditions via Ricceri’s three critical points theorem. (English) Zbl 1170.35387 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 5-6, 2343-2348 (2009). MSC: 35J55 35J50 35J70 35B45 35B65 PDF BibTeX XML Cite \textit{S. El Manouni} and \textit{M. K. Alaoui}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 5--6, 2343--2348 (2009; Zbl 1170.35387) Full Text: DOI
Dai, Guowei Infinitely many solutions for a Neumann-type differential inclusion problem involving the \(p(x)\)-Laplacian. (English) Zbl 1170.35561 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 6, 2297-2305 (2009). MSC: 35R70 35J20 35J70 PDF BibTeX XML Cite \textit{G. Dai}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 6, 2297--2305 (2009; Zbl 1170.35561) Full Text: DOI
Fan, Xianling; Deng, Shao-Gao Remarks on Ricceri’s variational principle and applications to the \(p(x)\)-Laplacian equations. (English) Zbl 1134.35035 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 11, 3064-3075 (2007). MSC: 35J20 35J65 35J70 PDF BibTeX XML Cite \textit{X. Fan} and \textit{S.-G. Deng}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 11, 3064--3075 (2007; Zbl 1134.35035) Full Text: DOI
Fan, Xianling; Ji, Chao Existence of infinitely many solutions for a Neumann problem involving the \(p(x)\)-Laplacian. (English) Zbl 1157.35040 J. Math. Anal. Appl. 334, No. 1, 248-260 (2007). Reviewer: Messoud A. Efendiev (Berlin) MSC: 35J60 35J20 47J30 49J45 PDF BibTeX XML Cite \textit{X. Fan} and \textit{C. Ji}, J. Math. Anal. Appl. 334, No. 1, 248--260 (2007; Zbl 1157.35040) Full Text: DOI
Mihăilescu, Mihai Existence and multiplicity of solutions for a Neumann problem involving the \(p(x)\)-Laplace operator. (English) Zbl 1163.35381 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 5, 1419-1425 (2007). MSC: 35J60 35J65 35J70 58E05 35D05 PDF BibTeX XML Cite \textit{M. Mihăilescu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 5, 1419--1425 (2007; Zbl 1163.35381) Full Text: DOI
Candito, Pasquale Two solutions to a nonlinear Neumann problem without asymptotic conditions. (English) Zbl 1196.34029 Rend. Circ. Mat. Palermo (2) 55, No. 1, 43-52 (2006). MSC: 34B15 35B38 PDF BibTeX XML Cite \textit{P. Candito}, Rend. Circ. Mat. Palermo (2) 55, No. 1, 43--52 (2006; Zbl 1196.34029) Full Text: DOI
Lakmeche, Abdelkader; Hammoudi, Ahmed Multiple positive solutions of the one-dimensional \(p\)-Laplacian. (English) Zbl 1097.34519 J. Math. Anal. Appl. 317, No. 1, 43-49 (2006). Reviewer: Klaus R. Schneider (Berlin) MSC: 34B18 34B24 PDF BibTeX XML Cite \textit{A. Lakmeche} and \textit{A. Hammoudi}, J. Math. Anal. Appl. 317, No. 1, 43--49 (2006; Zbl 1097.34519) Full Text: DOI
Faraci, Francesca Multiplicity results for a Neumann problem involving the \(p\)-Laplacian. (English) Zbl 1092.35033 J. Math. Anal. Appl. 277, No. 1, 180-189 (2003). MSC: 35J60 35J25 35J50 PDF BibTeX XML Cite \textit{F. Faraci}, J. Math. Anal. Appl. 277, No. 1, 180--189 (2003; Zbl 1092.35033) Full Text: DOI