×

zbMATH — the first resource for mathematics

Effect of thermal diffusion and electrostatic force on evolution of wind-blown sand flow. (English) Zbl 1231.76118
Summary: A theoretical model is suggested to mathematically describe the effect of thermal diffusion from a sand-bed on evolution of a wind-blown sand flow. An upward wind field is engendered by the thermal diffusion and the coupling interaction among the horizontal and upward wind flow, saltating grains, and a kind of electrostatic force exerted on the grains are considered in this theoretical model. The numerical results show that the effect of the thermal diffusion on the evolution process of wind-bown grain flow is quite obvious and very similar to the effect of the electrostatic force on the evolution. Not only the time for the entire system to reach a steady state (called the duration time), the transport rate of grains, the mass-flux profiles and the trajectory of saltating grains are affected by the thermal diffusion and the electrostatic force exerted on saltating grains, but also the wind profiles and the temperature profiles at the steady state are affected by the wind-blown sand flow.
MSC:
76F25 Turbulent transport, mixing
76F40 Turbulent boundary layers
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yao Deliang, Zhang Qiang, Li Jiachun, et al. Observation and modeling for terrestrial processes in alpine meadow[J]. Applied Mathematical and Mechanics (English Editon), 2004, 25(5):488–498. · Zbl 1070.86003 · doi:10.1007/BF02437597
[2] Dong Fei, Liu Dayou, He Daliang. Advances and tendency in understanding of wind-blown sand motion[J]. Advances in Mechanics, 1995, 25(3):368–391 (in Chinese). · Zbl 0850.76005
[3] Wang Boyi, Chen Qiang, Qi Longxi. Numerical modelling of dusry atmospheric flows over an erodible surface[J]. Acta Mechanica Sinica, 2004, 36(3):265–271 (in Chinese).
[4] Li Z S, Ni J R. Sidewall effect of wind tunnel on Aeolian sediment transport[R]. International Center for Arid and Semiarid Studies, Texas Tech University, Lubbock, Texas, USA, 2002, 45–49.
[5] Dong Zhibao, Liu Xiaoping, Wang Hongtao, et al. Aeolian sand transport: a wind tunnel model[J]. Sedimentary Geology, 2003, 161:71–83. DOI:10.1016/S0037-0738(03)00396-2. · doi:10.1016/S0037-0738(02)00396-2
[6] Gerety K M, Slingerland R. Nature of the saltating population in wind tunnel experiments with heterogeneous size density sand[J]. Development in Sedimentology, 1983, 38:115–131. · doi:10.1016/S0070-4571(08)70792-1
[7] Rasmussen K R, Mikkelsen H E. On the efficiency of vertical array Aeolian filed traps[J]. Sedimentology, 1998, 45(4):789–800. · doi:10.1046/j.1365-3091.1998.00179.x
[8] Nalpanis P, Hunt J C R, Barrett C F. Saltating particles over flat beds[J]. J Fluid Mech, 1993, 251:661–685. · doi:10.1017/S0022112093003568
[9] Anderson R S, Haff P K. Wind modification and bed response during saltation of sand in air[J]. Acta Mech, 1991, 1(Suppl):21–25.
[10] Shao Y, Raupach M R. The overshoot and equilibration of saltation[J]. J Geophys Res, 1992, 97(D18):20559–20564.
[11] Butterfield G R. Near bed mass flux profiles in aeolian sand transport: high resolution measurement in a wind tunnel[J]. Earth Surface Processes and Landforms, 1999, 24(5):393–412. · doi:10.1002/(SICI)1096-9837(199905)24:5<393::AID-ESP996>3.0.CO;2-G
[12] Zheng Xiaojing, He Lihong, Wu Jianjun. Vertical profiles of mass flux for windblown sand movement at steady state[J]. J Geoph Res, 2004, 109:B01106. DOI:10.1029/2003JB002656.
[13] Zheng X J, Huang N, Zhou Y H. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement[J]. J Geophy Res, 2003, 108(D10):4322. DOI:10.1029/2002JD002572. · doi:10.1029/2002JD002572
[14] Zheng X J, Huang N, Zhou Y Y. The effect of electrostatic force on the evolution of sand saltation cloud[J]. The European Physical Journal E, 2006, 19:129–138. DOI: 10.1140/epje/e2006-00020-9. · doi:10.1140/epje/e2006-00020-9
[15] Haltiner G J. Numerical weather prediction[M]. New York: John Wiley & Sons Inc, 1971.
[16] Zheng Xiaojing, Yue Gaowei. Influence of earth’s surface temperature field on sand saltating trajectories[J]. Chinese Journal of Applied Mechnics, 2005, 22(2):207–211 (in Chinese).
[17] Schmidt D S, Schmidt R A, Dent J D. Electrostatic force on saltating sand[J]. J Geophy Res, 1998, 103:8997–9001. · doi:10.1029/98JD00278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.