zbMATH — the first resource for mathematics

Velocity integration in a multilayer neural field model of spatial working memory. (English) Zbl 1417.92010
92B20 Neural networks for/in biological studies, artificial life and related topics
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34D10 Perturbations of ordinary differential equations
Full Text: DOI
[1] E. Aksay, G. Gamkrelidze, H. Seung, R. Baker, and D. Tank, In vivo intracellular recording and perturbation of persistent activity in a neural integrator, Nat. neurosci., 4 (2001), pp. 184–193.
[2] S.-i. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological cybernetics, 27 (1977), pp. 77–87. · Zbl 0367.92005
[3] M. I. Anderson and K. J. Jeffery, Heterogeneous modulation of place cell firing by changes in context, J. Neurosci., 23 (2003), pp. 8827–8835.
[4] G. Anello and G. Cordaro, Existence of solutions and bifurcation points to Hammerstein equations with essentially bounded kernel, J. Math. Anal. Appl., 298 (2004), pp. 292–297. · Zbl 1067.45001
[5] K. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia, 1976. · Zbl 0353.65069
[6] A. Baddeley, Working memory: Looking back and looking forward, Nat. Rev. Neurosci., 4 (2003), pp. 829–839.
[7] F. P. Battaglia, G. R. Sutherland, and B. L. McNaughton, Local sensory cues and place cell directionality: Additional evidence of prospective coding in the hippocampus, J. Neurosci., 24 (2004), pp. 4541–4550.
[8] P. M. Bays, Spikes not slots: noise in neural populations limits working memory, Trends in cognitive sciences, 19 (2015), pp. 431–438.
[9] P. C. Bressloff, Traveling fronts and wave propagation failure in an inhomogeneous neural network, Physica D: Nonlinear Phenom. 155 (2001), pp. 83–100. · Zbl 1004.92005
[10] P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields, J. Phys. A, Math. Theor., 45 (2011), p. 033001. · Zbl 1263.92008
[11] P. C. Bressloff and Z. P. Kilpatrick, Nonlinear Langevin equations for wandering patterns in stochastic neural fields, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 305–334. · Zbl 1402.92076
[12] C. D. Brody, R. Romo, and A. Kepecs, Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations, Current opinion Neurobiol., 13 (2003), pp. 204–211.
[13] N. Brunel and V. Hakim, Fast global oscillations in networks of integrate-and-fire neurons with low firing rates, Neural Comput., 11 (1999), pp. 1621–1671.
[14] Y. Burak and I. R. Fiete, Grid cells: The position code, neural network models of activity, and the problem of learning, Hippocampus, 18 (2008), pp. 1283–1300.
[15] Y. Burak and I. R. Fiete, Accurate path integration in continuous attractor network models of grid cells, PLoS Comput. Biol, 5 (2009), p. e1000291.
[16] G. Buzsáki and E. I. Moser, Memory, navigation and theta rhythm in the hippocampal-entorhinal system, Nat. Neurosci., 16 (2013), pp. 130–138.
[17] S. Carroll, K. Josić, and Z. P. Kilpatrick, Encoding certainty in bump attractors, J. comput. Neurosci., 37 (2014), pp. 29–48. · Zbl 1382.92043
[18] L. Chelazzi, J. Duncan, E. K. Miller, and R. Desimone, Responses of neurons in inferior temporal cortex during memory-guided visual search, J. Neurophysiol., 80 (1998), pp. 2918–2940.
[19] A. Compte, N. Brunel, P. S. Goldman-Rakic, and X.-J. Wang, Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model, Cerebral Cortex, 10 (2000), pp. 910–923.
[20] C. Constantinidis and X.-J. Wang, A neural circuit basis for spatial working memory, Neuroscientist, 10 (2004), pp. 553–565.
[21] S. Coombes, Waves, bumps, and patterns in neural field theories, Biol. Cybern., 93 (2005), pp. 91–108. · Zbl 1116.92012
[22] S. Coombes and M. R. Owen, Evans functions for integral neural field equations with Heaviside firing rate function, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 574–600. · Zbl 1067.92019
[23] C. Curtis, Prefrontal and parietal contributions to spatial working memory, Neuroscience, 139 (2006), pp. 173–180.
[24] D. Durstewitz, J. K. Seamans, and T. J. Sejnowski, Neurocomputational models of working memory, Nat. Neurosci., 3 (2000), pp. 1184–1191.
[25] B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems, Rep. Prog. Phys., 61 (1998), p. 353.
[26] A. A. Faisal, L. P. Selen, and D. M. Wolpert, Noise in the nervous system, Nat. Rev. Neurosci., 9 (2008), pp. 292–303.
[27] S. Folias and G. Ermentrout, New patterns of activity in a pair of interacting excitatory-inhibitory neural fields, Phys. Rev. Lett., 107 (2011), p. 228103.
[28] S. E. Folias and P. C. Bressloff, Breathing pulses in an excitatory neural network, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 378–407. · Zbl 1058.92010
[29] S. E. Folias and G. B. Ermentrout, Bifurcations of stationary solutions in an interacting pair of ei neural fields, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 895–938. · Zbl 1276.37049
[30] S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic, Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex, J. Neurophysiol., 61 (1989), pp. 331–349.
[31] M. Geva-Sagiv, L. Las, Y. Yovel, and N. Ulanovsky, Spatial cognition in bats and rats: From sensory acquisition to multiscale maps and navigation, Nat. Rev. Neurosci., 16 (2015), pp. 94–108.
[32] P. S. Goldman-Rakic, Cellular basis of working memory, Neuron, 14 (1995), pp. 477–485.
[33] Y. Guo and C. C. Chow, Existence and stability of standing pulses in neural networks: I. Existence, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 217–248. · Zbl 1109.34002
[34] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser, Microstructure of a spatial map in the entorhinal cortex, Nature, 436 (2005), pp. 801–806.
[35] A. Hammerstein, Nichtlineare integralgleichungen nebst anwendungen, Acta Math., 54 (1930), pp. 117–176. · JFM 56.0343.03
[36] D. Hansel and H. Sompolinsky, Modeling feature selectivity in local cortical circuits, in Methods in neuronal modeling: From ions to networks, C. Koch and I. Segev, eds., MIT Press, Cambridge, 1998, Chap. 13, pp. 499–567.
[37] J. V. Haxby, L. Petit, L. G. Ungerleider, and S. M. Courtney, Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory, Neuroimage, 11 (2000), pp. 145–156.
[38] S. Kastner, K. DeSimone, C. S. Konen, S. M. Szczepanski, K. S. Weiner, and K. A. Schneider, Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks, J. Neurophysiol., 97 (2007), pp. 3494–3507.
[39] Z. P. Kilpatrick, Interareal coupling reduces encoding variability in multi-area models of spatial working memory, Front. Comput. Neurosci., 7 (2013), p. 82.
[40] Z. P. Kilpatrick, Delay stabilizes stochastic motion of bumps in layered neural fields, Physica D: Nonlinear Phenom., 295 (2015), pp. 30–45. · Zbl 1365.92009
[41] Z. P. Kilpatrick and B. Ermentrout, Wandering bumps in stochastic neural fields, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 61–94. · Zbl 1278.92007
[42] Z. P. Kilpatrick, B. Ermentrout, and B. Doiron, Optimizing working memory with heterogeneity of recurrent cortical excitation, J. Neurosci., 33 (2013), pp. 18999–19011.
[43] J. J. Knierim and K. Zhang, Attractor dynamics of spatially correlated neural activity in the limbic system, Annu. Rev. Neurosci., 35 (2012), pp. 267–285.
[44] H. Ko, S. B. Hofer, B. Pichler, K. A. Buchanan, P. J. Sjöström, and T. D. Mrsic-Flogel, Functional specificity of local synaptic connections in neocortical networks, Nature, 473 (2011), pp. 87–91.
[45] C. R. Laing and C. C. Chow, Stationary bumps in networks of spiking neurons, Neural Comput., 13 (2001), pp. 1473–1494. · Zbl 0978.92004
[46] C. R. Laing and A. Longtin, Noise-induced stabilization of bumps in systems with long-range spatial coupling, Physica D, 160 (2001), pp. 149 – 172. · Zbl 0997.92002
[47] C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermentrout, Multiple bumps in a neuronal model of working memory, SIAM J. Appl. Math., 63 (2002), pp. 62–97. · Zbl 1017.45006
[48] I. Lee, D. Yoganarasimha, G. Rao, and J. J. Knierim, Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3, Nature, 430 (2004), pp. 456–459.
[49] B. Lindner, M. Kostur, and L. Schimansky-Geier, Optimal diffusive transport in a tilted periodic potential, Fluct. Noise Lett., 1 (2001), pp. R25–R39.
[50] A. Longtin, Stochastic resonance in neuron models, J. Stat. Phys., 70 (1993), pp. 309–327. · Zbl 1002.92503
[51] B. L. McNaughton, F. P. Battaglia, O. Jensen, E. I. Moser, and M.-B. Moser, Path integration and the neural basis of the ‘cognitive map’, Nat. Rev. Neurosci., 7 (2006), pp. 663–678.
[52] E. I. Moser, E. Kropff, and M.-B. Moser, Place cells, grid cells, and the brain’s spatial representation system, Annu. Rev. Neurosci., 31 (2008), pp. 69–89.
[53] W. J. O’brien, H. I. Browman, and B. I. Evans, Search strategies of foraging animals, Am. Sci., 78 (1990), pp. 152–160.
[54] B. Pesaran, J. S. Pezaris, M. Sahani, P. P. Mitra, and R. A. Andersen, Temporal structure in neuronal activity during working memory in macaque parietal cortex, Nat. Neurosci., 5 (2002), pp. 805–811.
[55] B. E. Pfeiffer and D. J. Foster, Autoassociative dynamics in the generation of sequences of hippocampal place cells, Science, 349 (2015), pp. 180–183.
[56] D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: I. traveling fronts and pulses, SIAM J. Appl. Math., 62 (2001), pp. 206–225. · Zbl 1001.92021
[57] D. Poll and Z. P. Kilpatrick, Stochastic motion of bumps in planar neural fields, SIAM J. Appl. Math., 75 (2015), pp. 1553–1577. · Zbl 1402.92108
[58] D. B. Poll, K. Nguyen, and Z. P. Kilpatrick, Sensory feedback in a bump attractor model of path integration, J. Comput. Sci., 40 (2016), pp. 137–155. · Zbl 1382.92263
[59] X.-L. Qi, T. Meyer, T. R. Stanford, and C. Constantinidis, Changes in prefrontal neuronal activity after learning to perform a spatial working memory task, Cerebral Cortex, 21 (2011) pp. 2722–2732.
[60] S. G. Rao, G. V. Williams, and P. S. Goldman-Rakic, Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: Evidence for microcolumnar organization in PFC, J. Neurophysiol., 81 (1999), pp. 1903–1916.
[61] A. Renart, N. Brunel, and X.-J. Wang, Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks, in Computational Neuroscience: A Comprehensive Approach, Chapman and Hall, London, 2003, pp. 431–490.
[62] A. Renart, P. Song, and X.-J. Wang, Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks, Neuron, 38 (2003), pp. 473–485.
[63] H. Risken, Fokker-Planck equation, in The Fokker-Planck Equation, Springer, Berlin, 1984, pp. 63–95. · Zbl 0546.60084
[64] J. B. Rowe, I. Toni, O. Josephs, R. S. Frackowiak, and R. E. Passingham, The prefrontal cortex: Response selection or maintenance within working memory?, Science, 288 (2000), pp. 1656–1660.
[65] A. Samsonovich and B. L. McNaughton, Path integration and cognitive mapping in a continuous attractor neural network model, J. Neurosci., 17 (1997), pp. 5900–5920.
[66] B. Sandstede, Stability of travelling waves, Handbook of dynamical systems, 2 (2002), pp. 983–1055. · Zbl 1056.35022
[67] F. Sargolini, M. Fyhn, T. Hafting, B. L. McNaughton, M. P. Witter, M.-B. Moser, and E. I. Moser, Conjunctive representation of position, direction, and velocity in entorhinal cortex, Science, 312 (2006), pp. 758–762.
[68] D. Schluppeck, C. E. Curtis, P. W. Glimcher, and D. J. Heeger, Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades, J. Neurosci., 26 (2006), pp. 5098–5108.
[69] E. Schneidman, W. Bialek, and M. J. Berry, Synergy, redundancy, and independence in population codes, J. Neurosci., 23 (2003), pp. 11539–11553.
[70] H. S. Seung, How the brain keeps the eyes still, Proc. Nati. Acad. Sci. USA, 93 (1996), pp. 13339–13344.
[71] J. R. Silvester, Determinants of block matrices, The Mathematical Gazette, 84 (2000), pp. 460–467.
[72] J. S. Taube, The head direction signal: origins and sensory-motor integration, Annu. Rev. Neurosci., 30 (2007), pp. 181–207.
[73] R. Veltz and O. Faugeras, Local/global analysis of the stationary solutions of some neural field equations, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 954–998. · Zbl 1194.92015
[74] X.-J. Wang, Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory, J. Neurosci., 19 (1999), pp. 9587–9603.
[75] Y. Wang, H. Markram, P. H. Goodman, T. K. Berger, J. Ma, and P. S. Goldman-Rakic, Heterogeneity in the pyramidal network of the medial prefrontal cortex, Nat. Neurosci., 9 (2006), pp. 534–542.
[76] T. J. Wills, C. Lever, F. Cacucci, N. Burgess, and J. O’Keefe, Attractor dynamics in the hippocampal representation of the local environment, Science, 308 (2005), pp. 873–876.
[77] K. Wimmer, D. Q. Nykamp, C. Constantinidis, and A. Compte, Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory, Nat. Neurosci., 17 (2014), pp. 431–439.
[78] X. Xie, R. H. Hahnloser, and H. S. Seung, Double-ring network model of the head-direction system, Phys. Rev. E, 66 (2002), p. 041902.
[79] K. Yoon, M. A. Buice, C. Barry, R. Hayman, N. Burgess, and I. R. Fiete, Specific evidence of low-dimensional continuous attractor dynamics in grid cells, Nat. Neurosci., 16 (2013), pp. 1077–1084.
[80] K. Yoon, S. Lewallen, A. A. Kinkhabwala, D. W. Tank, and I. R. Fiete, Grid cell responses in 1D environments assessed as slices through a 2D lattice, Neuron, 89 (2016), pp. 1086–1099.
[81] K. Zhang, Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory, J. Neurosci., 16 (1996), pp. 2112–2126.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.