zbMATH — the first resource for mathematics

Weld pool dynamics and the formation of ripples in 3D gas metal arc welding. (English) Zbl 1144.80318
Summary: This article studies the transient weld pool dynamics under the periodical impingement of filler droplets that carry mass, momentum, thermal energy, and species in a moving 3D gas metal arc welding. The complicated transport phenomena in the weld pool are caused by the combined effect of droplet impingement, gravity, electromagnetic force, plasma arc force, and surface tension force (Marangoni effect). The weld pool shape and the distributions of temperature, velocity, and species in the weld pool are calculated as a function of time. The phenomena of “open and close-up” for a crater in the weld pool and the corresponding weld pool dynamics are analyzed. The commonly observed ripples at the surface of a solidified weld bead are, for the first time, predicted by the present model. Detailed mechanisms leading to the formation of ripples are discussed.

80A20 Heat and mass transfer, heat flow (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
78A30 Electro- and magnetostatics
80A22 Stefan problems, phase changes, etc.
76R10 Free convection
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI
[1] E.F. Nippes et al, Welding, brazing, and soldering, Metals Handbook (ninth ed.), vol. 6, American Society for Metals, 1983, pp. 153 – 181.
[2] Szekely, J.: Transport phenomena in welds with emphasis on free surface phenomena, Recent trends in welding science and technology, TWR’89, 3-10 (1990)
[3] Dutta, P.; Joshi, Y.; Janaswami, R.: Thermal modelling of GTAW process with nonaxisymmetric boundary conditions, Numer. heat transfer A 27, 499-518 (1995)
[4] Chakraborty, N.; Chakraborty, S.; Dutta, P.: Three-dimensional modeling of turbulent weld pool convection in GTAW processes, Numer. heat transfer A 45, 391-413 (2004)
[5] Reddy, A. A.; Guha, B.; Achar, D. R. G.: Finite element modeling of three-dimensional transient heat transfer in stainless steel (304) pulsed GTA weldments, Numer. heat transfer A 41, 41-64 (2002)
[6] Kim, W. H.; Fan, H. G.; Na, S. J.: Effect of various driving forces on heat and mass transfer in arc welding, Numer. heat transfer A 32, 633-652 (1997)
[7] Oreper, G. M.; Szekely, J.: Heat and fluid-flow phenomena in weld pools, J. fluid mech. 147, 53-79 (1984) · Zbl 0595.76094 · doi:10.1017/S0022112084001981
[8] Kanouff, M.; Greif, R.: The unsteady development of a GTA weld pool, Int. J. Heat mass transfer 35, 967-979 (1992) · Zbl 0825.76939 · doi:10.1016/0017-9310(92)90261-P
[9] Yeh, R. -H.; Liaw, S. -P.; Tu, Y. -P.: Transient three-dimensional analysis of gas tungsten arc welding plates, Numer. heat transfer A 51, 573-592 (2007)
[10] Oreper, G. M.; Eagar, T. W.; Szekely, J.: Convection in arc weld pools, Welding J., 307s-312s (1983)
[11] Choo, R. T. C.; Szekely, J.: The effect of gas shear stress on Marangoni flows in arc welding, Welding J., 223s-233s (1991)
[12] Tsai, M. C.; Kou, S.: Electromagnetic-force-induced convection in weld pools with a free surface, Welding J., 241s-246s (1990)
[13] Wang, Y.; Shi, Q.; Tsai, H. L.: Modeling of the effects of surface-active elements on flow patterns and weld penetration, Metall. trans. 32B, 145-161 (2001)
[14] Tsao, M. C.; Wu, C. S.: Fluid flow and heat transfer in GMA weld pools, Welding J., 70s-75s (1988)
[15] Jaidi, J.; Dutta, P.: Modeling of transport phenomena in a gas metal arc welding process, Numer. heat transfer A 40, 543-562 (2001)
[16] Wang, Y.; Tsai, H. L.: Impingement of filler droplets and weld pool dynamics during gas metal arc welding process, Int. J. Heat mass transfer 44, 2067-2080 (2001) · Zbl 1064.76624 · doi:10.1016/S0017-9310(00)00251-9
[17] Fan, H. G.; Kovacevic, R.: A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool, J. phys. D: appl. Phys. 37, 2531-2544 (2004)
[18] Fan, H. G.; Kovacevic, R.: Droplet formation, detachment, and impingement on the molten pool in gas metal arc welding, Metall. trans. 30B, 791-801 (1999)
[19] Wang, Y.; Tsai, H. L.: Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding, Metall. trans. 32B, 501-515 (2001)
[20] Zhu, F. L.; Tsai, H. L.; Marin, S. P.; Wang, P. C.: A comprehensive model on the transport phenomena during gas metal arc welding process, Prog. comput. Fluid dynam. 4, No. 2, 99-117 (2004)
[21] Hu, J.; Tsai, H. L.: Heat and mass transfer in gas metal arc welding. Part I: The arc, Int. J. Heat mass transfer 50, 833-846 (2007) · Zbl 1124.80329 · doi:10.1016/j.ijheatmasstransfer.2006.08.025
[22] Hu, J.; Tsai, H. L.: Heat and mass transfer in gas metal arc welding. Part II: The metal, Int. J. Heat mass transfer 50, 808-820 (2007) · Zbl 1124.80329 · doi:10.1016/j.ijheatmasstransfer.2006.08.025
[23] Hu, J.; Tsai, H. L.: Effects of current on droplet generation and arc plasma in gas metal arc welding, J. appl. Phys. 100, 053304 (2006)
[24] Hu, J.; Tsai, H. L.: Metal transfer and arc plasma in gas metal arc welding, ASME J. Heat transfer 129, 1025-1035 (2007) · Zbl 1124.80329
[25] Kim, J. W.; Na, S. J.: A study on the three-dimensional analysis of heat and fluid flow in gas metal arc welding using boundary-fitted coordinates, ASME J. Eng. ind. 116, 78-85 (1994)
[26] Ushio, M.; Wu, C. S.: Mathematical modeling of three-dimensional heat and fluid flow in a moving gas metal arc weld pool, Metall. trans. 28B, 509-516 (1997)
[27] Cao, Z.; Yang, Z.; Chen, X. L.: Three-dimensional simulation of transient GMA weld pool with free surface, Welding J., 169-176s (2004)
[28] D.B. Kothe, R.C. Mjolsness, Ripple: a new model for incompressible flows with free surfaces, LA-UR-91-2818, Los Alamos National Laboratory, 1991. · Zbl 0762.76074
[29] Diao, Q. Z.; Tsai, H. L.: Modeling of solute redistribution in the mushy zone during solidification of aluminum-copper alloys, Metall. trans. 24A, 963-973 (1993)
[30] Carman, P. C.: Fluid flow through granular beds, Trans. inst. Chem. eng. 15, 150-166 (1937)
[31] Kubo, K.; Pehlke, R. D.: Mathematical modeling of porosity formation in solidification, Metall. trans. 16A, 823-829 (1985)
[32] Beavers, G. S.; Sparrow, E. M.: Non-Darcy flow through fibrous porous media, J. appl. Mech. 36, 711-714 (1969)
[33] Sahoo, P.; Debroy, T.; Mcnallan, M. J.: Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy, Metall. trans. 19B, 483-491 (1988)
[34] Zacharia, T.; David, S. A.; Vitek, J. M.: Effect of evaporation and temperature-dependent material properties on weld pool development, Metall. trans. 22B, 233-241 (1992)
[35] J.E. Welch, F.H. Harlow, J.P. Shannon, B.J. Daly, The MAC method: a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surface, LA-3425, Los Alamos Scientific Laboratory, 1966.
[36] Patankar, S. V.: Numerical heat transfer and fluid flow, (1980) · Zbl 0521.76003
[37] Kerhaw, D. S.: The incomplete Cholesky-conjugate gradient method for the interactive solution of systems of linear equations, J. comput. Phys. 26, 43-65 (1978) · Zbl 0367.65018 · doi:10.1016/0021-9991(78)90098-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.