Zhao, Taiyin; Ali, Gohar; Hameed, Nabila; Inayat Ali Shah, Syed; Chu, Yu-Ming The numerical invariants concerning the total domination for generalized Petersen graphs. (English) Zbl 07304841 J. Math. 2020, Article ID 5473675, 5 p. (2020). MSC: 90 05 PDF BibTeX XML Cite \textit{T. Zhao} et al., J. Math. 2020, Article ID 5473675, 5 p. (2020; Zbl 07304841) Full Text: DOI
Campanelli, Nicolás; Kuziak, Dorota Total Roman domination in the lexicographic product of graphs. (English) Zbl 1414.05221 Discrete Appl. Math. 263, 88-95 (2019). MSC: 05C69 05C76 PDF BibTeX XML Cite \textit{N. Campanelli} and \textit{D. Kuziak}, Discrete Appl. Math. 263, 88--95 (2019; Zbl 1414.05221) Full Text: DOI
Asplund, John; Davila, Randy; Krop, Elliot A Vizing-type result for semi-total domination. (English) Zbl 1407.05172 Discrete Appl. Math. 258, 8-12 (2019). MSC: 05C69 05C76 PDF BibTeX XML Cite \textit{J. Asplund} et al., Discrete Appl. Math. 258, 8--12 (2019; Zbl 1407.05172) Full Text: DOI arXiv
Goddard, Wayne; Henning, Michael A. A note on domination and total domination in prisms. (English) Zbl 1434.05108 J. Comb. Optim. 35, No. 1, 14-20 (2018). Reviewer: Venkatakrishnan Yanamandram (Tiruchirappalli) MSC: 05C69 05C76 PDF BibTeX XML Cite \textit{W. Goddard} and \textit{M. A. Henning}, J. Comb. Optim. 35, No. 1, 14--20 (2018; Zbl 1434.05108) Full Text: DOI
Bermudo, S.; Sanchéz, J. L.; Sigarreta, J. M. Total \(k\)-domination in Cartesian product graphs. (English) Zbl 1413.05279 Period. Math. Hung. 75, No. 2, 255-267 (2017). MSC: 05C69 05C76 PDF BibTeX XML Cite \textit{S. Bermudo} et al., Period. Math. Hung. 75, No. 2, 255--267 (2017; Zbl 1413.05279) Full Text: DOI
Dod, Markus Graph products of the trivariate total domination polynomial and related polynomials. (English) Zbl 1339.05284 Discrete Appl. Math. 209, 92-101 (2016). MSC: 05C69 05C31 05C76 05C15 PDF BibTeX XML Cite \textit{M. Dod}, Discrete Appl. Math. 209, 92--101 (2016; Zbl 1339.05284) Full Text: DOI
Brešar, Boštjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; Klavžar, Sandi; Rall, Douglas F. Vizing’s conjecture: a survey and recent results. (English) Zbl 1234.05173 J. Graph Theory 69, No. 1-2, 46-76 (2012). MSC: 05C69 05C76 PDF BibTeX XML Cite \textit{B. Brešar} et al., J. Graph Theory 69, No. 1--2, 46--76 (2012; Zbl 1234.05173) Full Text: DOI
Imani, N.; Sarbazi-Azad, H.; Zomaya, A. Y. Resource placement in Cartesian product of networks. (English) Zbl 1233.68111 J. Parallel Distrib. Comput. 70, No. 5, 481-495 (2010). MSC: 68M20 68M07 68R10 68M14 PDF BibTeX XML Cite \textit{N. Imani} et al., J. Parallel Distrib. Comput. 70, No. 5, 481--495 (2010; Zbl 1233.68111) Full Text: DOI
Henning, Michael A. A short proof of a result on a Vizing-like problem for integer total domination. (English) Zbl 1206.90200 J. Comb. Optim. 20, No. 3, 321-323 (2010). MSC: 90C35 90C27 PDF BibTeX XML Cite \textit{M. A. Henning}, J. Comb. Optim. 20, No. 3, 321--323 (2010; Zbl 1206.90200) Full Text: DOI
Li, Ning; Hou, Xinmin On the total \(\{k\}\)-domination number of Cartesian products of graphs. (English) Zbl 1193.05128 J. Comb. Optim. 18, No. 2, 173-178 (2009). MSC: 05C69 PDF BibTeX XML Cite \textit{N. Li} and \textit{X. Hou}, J. Comb. Optim. 18, No. 2, 173--178 (2009; Zbl 1193.05128) Full Text: DOI
Henning, Michael A. A survey of selected recent results on total domination in graphs. (English) Zbl 1219.05121 Discrete Math. 309, No. 1, 32-63 (2009). MSC: 05C69 05-02 PDF BibTeX XML Cite \textit{M. A. Henning}, Discrete Math. 309, No. 1, 32--63 (2009; Zbl 1219.05121) Full Text: DOI
Dorbec, Paul; Henning, Michael A.; Rall, Douglas F. On the upper total domination number of Cartesian products of graphs. (English) Zbl 1157.05042 J. Comb. Optim. 16, No. 1, 68-80 (2008). MSC: 05C69 PDF BibTeX XML Cite \textit{P. Dorbec} et al., J. Comb. Optim. 16, No. 1, 68--80 (2008; Zbl 1157.05042) Full Text: DOI