×

On the theory of plane inhomogeneous waves in anisotropic elastic media. (English) Zbl 1074.74552

Wave Motion 34, No. 4, 401-429 (2001); erratum ibid. 36, No. 3, 305 (2002).
Summary: In the theory of plane inhomogeneous elastic waves, the complex wave vector constituted by two real vectors in a given plane may be described with the aid of two complex scalar parameters. Either of those parameters may be taken as a free one in the characteristic condition assigned to the wave equation. This alternative underlies the two fundamental approaches in the theory, namely, one associated with the Stroh eigenvalue problem and the other with the generalized Christoffel eigenvalue problem. The two approaches are identical insofar as a partial nondegenerate wave solution (partial mode) is concerned, but they differ in the fundamental solution (wave packet) assembling, and their dissimilarity is also revealed in the presence of degeneracies, which may involve either of the two governing parameters or both of them. Therefore, use of both approaches is essential for studying the degeneracy phenomenon in the theory of inhomogeneous waves. The criteria for different types of degeneracy, related to a double eigenvalue of the Stroh matrix or the Christoffel matrix and at the same time to a repeated root of the characteristic condition, are formulated by appeal to the matrix algebra and to the theory of polynomial equations. On this basis, dimensions of the manifolds, associated with degeneracy of different types in the space of variables, are established for elastic media of unrestricted anisotropy. A relation to the boundary value problems is discussed.

MSC:

74J05 Linear waves in solid mechanics
74E10 Anisotropy in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M.J.P. Musgrave, Crystal Acoustics, Holden-Day, San Fransisco, CA, 1970.; M.J.P. Musgrave, Crystal Acoustics, Holden-Day, San Fransisco, CA, 1970.
[2] Ph. Boulanger, M. Hayes, Bivectors and Waves in Mechanics and Optics, Chapman & Hall, London, 1993.; Ph. Boulanger, M. Hayes, Bivectors and Waves in Mechanics and Optics, Chapman & Hall, London, 1993. · Zbl 0924.73002
[3] Hayes, M., Inhomogeneous plane waves, Arch. Rat. Mech. Anal., 85, 41-79 (1984) · Zbl 0537.73015
[4] T.C.T. Ting, Anisotropic Elasticity: Theory and Applications, OUP, Oxford, 1996.; T.C.T. Ting, Anisotropic Elasticity: Theory and Applications, OUP, Oxford, 1996.
[5] Deschamps, M.; Roux, J., Some considerations concerning evanescent surface waves, Ultrasonics, 29, 283-287 (1991)
[6] Caviglia, G.; Morro, A., Waves at a bonded interface between dissipative solids, Quart. J. Mech. Appl. Math., 47, 305-322 (1994) · Zbl 0804.73011
[7] Carcione, J. M., Reflection and refraction of antiplane shear waves at a plane boundary between viscoelastic anisotropic media, Proc. R. Soc. London A, 453, 919-942 (1997) · Zbl 0896.73011
[8] G.W. Farnell, Properties of elastic surface waves, in: W.P. Mason, R.N. Thurston (Eds.), Physical Acoustics, Vol. 6, Academic Press, New York, 1970, pp. 109-166.; G.W. Farnell, Properties of elastic surface waves, in: W.P. Mason, R.N. Thurston (Eds.), Physical Acoustics, Vol. 6, Academic Press, New York, 1970, pp. 109-166.
[9] Alshits, V. I.; Lothe, J., Relation between surface wave theory and reflection, Wave Motion, 3, 297-310 (1981) · Zbl 0471.73018
[10] Darinskii, A. N., On the theory of leaky waves in crystals, Wave Motion, 25, 35-49 (1997) · Zbl 0953.74561
[11] Ting, T. C.T., Surface waves in anisotropic elastic materials for which the matrix \(N}(v)\) is extraordinary degenerate, degenerate, or semisimple, Proc. R. Soc. London A, 453, 449-472 (1997) · Zbl 0884.73013
[12] Ting, T. C.T.; Barnett, D. M., Classification of surface waves in anisotropic elastic materials, Wave Motion, 26, 207-218 (1997) · Zbl 0954.74530
[13] Ting, T. C.T., A modified Lekhnitskii formalism à la Stroh for anisotropic elasticity and classifications of the 6×6 matrix \(N}(v)\), Proc. R. Soc. London A, 455, 69-89 (1999) · Zbl 0955.74007
[14] Shuvalov, A. L.; Chadwick, P., Degeneracies in the theory of plane harmonic wave propagation in anisotropic heat-conducting elastic media, Phil. Trans. R. Soc. London A, 355, 156-188 (1997) · Zbl 0882.73020
[15] Shuvalov, A. L.; Scott, N. H., On the properties of homogeneous viscoelastic waves, Quart. J. Mech. Appl. Math., 52, 3, 1-13 (1999) · Zbl 0953.74037
[16] Nishioka, K.; Lothe, J., Perturbation method for nonsemisimple matrices, Phys. Norv., 6, 171-178 (1972)
[17] Darinskii, A. N., Quasi-bulk Rayleigh waves in semi-infinite media of arbitrary anisotropy, Wave Motion, 27, 79-93 (1998) · Zbl 1074.74556
[18] T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer, New York, 1982.; T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer, New York, 1982. · Zbl 0493.47008
[19] Alshits, V. I.; Lothe, J., Elastic waves in triclinic crystals. I. General theory and the degeneracy problem, Sov. Phys. Crystallogr., 24, 387-392 (1979)
[20] Chadwick, P.; Smith, G. D., Foundations of the theory of surface waves in anisotropic elastic materials, Adv. Appl. Mech., 17, 303-376 (1977) · Zbl 0475.73019
[21] Chadwick, P., A general analysis of transonic states in an anisotropic elastic body, Proc. R. Soc. London A, 401, 203-223 (1985) · Zbl 0583.73028
[22] A.S. Schwarz, Topology for Physicists, Springer, Berlin, 1991.; A.S. Schwarz, Topology for Physicists, Springer, Berlin, 1991.
[23] Barnett, D. M.; Lothe, J., Synthesis of the sextic and the integral formalism for dislocations: Greens function and surface waves in anisotropic elastic solids, Phys. Norv., 7, 13-19 (1973)
[24] Barnett, D. M.; Lothe, J., Consideration of the existence of surface wave (Rayleigh wave) solutions in anisotropic elastic crystals, J. Phys. F, 4, 671-686 (1974)
[25] Lothe, J.; Barnett, D. M., On the existence of surface wave solutions for anisotropic elastic half-spaces with free surface, J. Appl. Phys., 47, 428-433 (1976)
[26] B.L. van der Waerden, Algebra, Vol. 1, Springer, Berlin, 1971.; B.L. van der Waerden, Algebra, Vol. 1, Springer, Berlin, 1971. · Zbl 0221.12001
[27] Duff, G. F.D., The Cauchy problem for elastic waves in an anisotropic medium, Phil. Trans. R. Soc. London, 252, 249 (1960) · Zbl 0103.42502
[28] Barnett, D. M.; Lothe, J.; Gavazza, S. D.; Musgrave, M. J.P., Interfacial (Stoneley) waves in bonded anisotropic half-spaces, Proc. R. Soc. London A, 402, 153-166 (1985) · Zbl 0587.73031
[29] Darinskii, A. N.; Alshits, V. I.; Lothe, J.; Lyubimov, V. N.; Shuvalov, A. L., An existence criterion for the branch of two-partial Rayleigh waves in anisotropic media, Wave Motion, 28, 241-257 (1998) · Zbl 1074.74564
[30] Wang, L.; Gundersen, S. A., Existence of one component surface waves in anisotropic elastic media, Phys. Scripta, 47, 394-404 (1993)
[31] D.M. Barnett, P. Chadwick, The existence of one-component surface waves and exceptional subsequent transonic states of types 2, 4 and E1 in anisotropic elastic media, in: J.J. Wu, T.C.T. Ting, D.M. Barnett (Eds.), Modern Theory of Anisotropic Elasticity and Applications, SIAM, Philadelphia, PA, 1991, pp. 191-214.; D.M. Barnett, P. Chadwick, The existence of one-component surface waves and exceptional subsequent transonic states of types 2, 4 and E1 in anisotropic elastic media, in: J.J. Wu, T.C.T. Ting, D.M. Barnett (Eds.), Modern Theory of Anisotropic Elasticity and Applications, SIAM, Philadelphia, PA, 1991, pp. 191-214.
[32] Deschamps, M., Reflection and refraction of the evanescent plane wave on plane interfaces, J. Acoust. Soc. Am., 96, 2841-2848 (1994)
[33] F.I. Fedorov, Theory of Elastic Waves in Crystals, Plenum Press, New York, 1968.; F.I. Fedorov, Theory of Elastic Waves in Crystals, Plenum Press, New York, 1968.
[34] Shuvalov, A. L., Topological features of the polarization fields of plane acoustic waves in anisotropic media, Proc. R. Soc. London A, 454, 2911-2947 (1998) · Zbl 0927.74038
[35] Fedorov, F. I.; Fedorov, A. F., On the structure of the Green-Christoffel tensor, J. Phys. A, 24, 71-78 (1991) · Zbl 0723.73008
[36] Ph. Boulanger, M. Hayes, Inhomogeneous plane waves in anisotropic elastic materials, in: D. Parker, A.H. England (Eds.), IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, Kluwer Academic Publishers, Dordrecht, 1995, pp. 431-436.; Ph. Boulanger, M. Hayes, Inhomogeneous plane waves in anisotropic elastic materials, in: D. Parker, A.H. England (Eds.), IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, Kluwer Academic Publishers, Dordrecht, 1995, pp. 431-436. · Zbl 0883.73018
[37] Ph. Boulanger, M. Hayes, Bounds on elastic wave speeds in crystals: theory and applications, Proc. R. Soc. London A 454 (1998) 2289-2322.; Ph. Boulanger, M. Hayes, Bounds on elastic wave speeds in crystals: theory and applications, Proc. R. Soc. London A 454 (1998) 2289-2322. · Zbl 0926.74048
[38] Chadwick, P.; Norris, A. N., Conditions under which the slowness surface of an anisotropic material is a union of aligned ellipsoids, Quart. J. Mech. Appl. Math., 43, 589-603 (1990) · Zbl 0721.73008
[39] Burridge, R.; Chadwick, P.; Norris, A. N., Fundamental elastodynamic solutions for anisotropic media with ellipsoidal slowness surfaces, Proc. R. Soc. London A, 440, 655-681 (1993) · Zbl 0793.73020
[40] Darinskii, A. N., Leaky waves and the elastic wave resonance reflection on a crystal-thin solid layer interface. II. Leaky waves given rise to by exceptional bulk waves, J. Acoust. Soc. Am., 103, 1845-1854 (1998)
[41] Ph. Boulanger, M. Hayes, Acoustic axes for elastic waves in crystals: theory and applications, Proc. R. Soc. London A 454 (1998) 2323-2346.; Ph. Boulanger, M. Hayes, Acoustic axes for elastic waves in crystals: theory and applications, Proc. R. Soc. London A 454 (1998) 2323-2346. · Zbl 0921.73099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.