×

Turbulence dynamics in separated flows: the generalised Kolmogorov equation for inhomogeneous anisotropic conditions. (English) Zbl 1419.76279

Summary: The generalised Kolmogorov equation is used to describe the scale-by-scale turbulence dynamics in the shear layer and in the separation bubble generated by a bulge at one of the walls in a turbulent channel flow. The second-order structure function, which is the basis of such an equation, is used as a proxy to define a scale-energy content, that is an interpretation of the energy associated with a given scale. Production and dissipation regions and the flux interchange between them, in both physical and separation space, are identified. Results show how the generalised Kolmogorov equation, a five-dimensional equation in our anisotropic and strongly inhomogeneous flow, can describe the turbulent flow behaviour and related energy mechanisms. Such complex statistical observables are linked to a visual inspection of instantaneous turbulent structures detected by means of the Q-criterion. Part of these turbulent structures are trapped in the recirculation where they undergo a pseudo-cyclic process of disruption and reformation. The rest are convected downstream, grow and tend to larger streamwise scales in an inverse cascade. The classical picture of homogeneous isotropic turbulence in which energy is fed at large scales and transferred to dissipate at small scales does not simply apply to this flow where the energy dynamics strongly depends on position, orientation and length scale.

MSC:

76F20 Dynamical systems approach to turbulence
76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cardesa, J. I.; Vela-Martín, A.; Jiménez, J., The turbulent cascade in five dimensions, Science, 357, 782-784, (2017) · Zbl 1404.76104
[2] Casciola, C. M.; Gualtieri, P.; Benzi, R.; Piva, R., Scale-by-scale budget and similarity laws for shear turbulence, J. Fluid Mech., 476, 105-114, (2003) · Zbl 1163.76375
[3] Casciola, C. M.; Gualtieri, P.; Jacob, B.; Piva, R., Scaling properties in the production range of shear dominated flows, Phys. Rev. Lett., 95, 2, (2005)
[4] Cimarelli, A.; Angelis, E. D.; Casciola, C. M., Paths of energy in turbulent channel flows, J. Fluid Mech., 715, 436-451, (2013) · Zbl 1284.76193
[5] Cimarelli, A.; De Angelis, E.; Schlatter, P.; Brethouwer, G.; Talamelli, A.; Casciola, C. M., Sources and fluxes of scale energy in the overlap layer of wall turbulence, J. Fluid Mech., 771, 407-423, (2015)
[6] Corrsin, S.1958 Local isotropy in turbulent shear flow. NACA Tech. Rep. RM 58B11.
[7] Danaila, L.; Anselmet, F.; Zhou, T., Turbulent energy scale-budget equations for nearly homogeneous sheared turbulence, Flow Turbul. Combust., 72, 2-4, 287-310, (2004) · Zbl 1081.76547
[8] Danaila, L.; Anselmet, F.; Zhou, T.; Antonia, Ra, Turbulent energy scale budget equations in a fully developed channel flow, J. Fluid Mech., 430, 87-109, (2001) · Zbl 0976.76030
[9] Davidson, P., Turbulence: An Introduction for Scientists and Engineers, (2015), Oxford University Press · Zbl 1315.76001
[10] Eyink, G. L.; Sreenivasan, K. R., Onsager and the theory of hydrodynamic turbulence, Rev. Mod. Phys., 78, 1, 87-135, (2006) · Zbl 1205.01032
[11] Fischer, P., Lottes, J. W. & Kerkemeier, S. G.2008Nek5000 - Open Source Spectral Element CFD Solver. Argonne National Laboratory, Mathematics and Computer Science Division, see http://nek5000.mcs.anl.gov.
[12] Frisch, U., Turbulence: the Legacy of AN Kolmogorov, (1995), Cambridge University Press · Zbl 0832.76001
[13] Gomes-Fernandes, R.; Ganapathisubramani, B.; Vassilicos, J. C., The energy cascade in near-field non-homogeneous non-isotropic turbulence, J. Fluid Mech., 771, 676-705, (2015)
[14] Hill, R. J., Exact second-order structure-function relationships, J. Fluid Mech., 468, 317-326, (2002) · Zbl 1062.76028
[15] Jerison, D., Singer, I. & Stroock, D.1997The Legacy of Norbert Wiener: A Centennial Symposium, vol. 60. American Mathematical Society. · Zbl 0869.00026
[16] Kähler, C. J.; Scharnowski, S.; Cierpka, C., Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions, J. Fluid Mech., 796, 257-284, (2016)
[17] De Karman, T.; Howarth, L., On the statistical theory of isotropic turbulence, Proc. R. Soc. Lond. A, 164, 192-215, (1938) · JFM 64.1453.03
[18] Khintchine, A., Korrelationstheorie der stationären stochastischen prozesse, Math. Ann., 109, 1, 604-615, (1934) · Zbl 0008.36806
[19] Kolmogorov, A. N.1941The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR30, 299-303. Reprinted in Proc. R. Soc. Lond. A 434, 9-13 (1991). · Zbl 1142.76389
[20] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics, (1987), Pergamon
[21] Marati, N.; Casciola, C. M.; Piva, R., Energy cascade and spatial fluxes in wall turbulence, J. Fluid Mech., 521, 191-215, (2004) · Zbl 1065.76103
[22] Mollicone, J.-P.; Battista, F.; Gualtieri, P.; Casciola, C. M., Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel, J. Fluid Mech., 823, 100-133, (2017) · Zbl 1422.76077
[23] Monin, A. S. & Yaglom, A. M.1971aStatistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT Press.
[24] Monin, A. S. & Yaglom, A. M.1971bStatistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. MIT Press.
[25] Patera, A. T., A spectral element method for fluid dynamics, J. Comput. Phys., 54, 468-488, (1984) · Zbl 0535.76035
[26] Thiesset, F.; Antonia, R. A.; Danaila, L.; Djenidi, L., Kármán-Howarth closure equation on the basis of a universal eddy viscosity, Phys. Rev. E, 88, 1, (2013) · Zbl 1284.76191
[27] Thiesset, F.; Danaila, L.; Antonia, R. A.; Zhou, T., Scale-by-scale energy budgets which account for the coherent motion, J. Phys.: Conf. Ser., 318, (2011)
[28] Townsend, A. A., The Structure of Turbulent Shear Flow, (1980), Cambridge University Press · Zbl 0435.76033
[29] Wiener, N., Generalized harmonic analysis, Acta Math., 55, 1, 117-258, (1930) · JFM 56.0954.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.