×

zbMATH — the first resource for mathematics

Fault diagnosis and fault-tolerant control of uncertain robot manipulators using high-order sliding mode. (English) Zbl 1400.93214
Summary: A robust fault diagnosis and fault-tolerant control (FTC) system for uncertain robot manipulators without joint velocity measurement is presented. The actuator faults and robot manipulator component faults are considered. The proposed scheme is designed via an active fault-tolerant control strategy by combining a fault diagnosis scheme based on a super-twisting third-order sliding mode (STW-TOSM) observer with a robust super-twisting second-order sliding mode (STW-SOSM) controller. Compared to the existing FTC methods, the proposed FTC method can accommodate not only faults but also uncertainties, and it does not require a velocity measurement. In addition, because the proposed scheme is designed based on the high-order sliding mode (HOSM) observer/controller strategy, it exhibits fast convergence, high accuracy, and less chattering. Finally, computer simulation results for a PUMA560 robot are obtained to verify the effectiveness of the proposed strategy.

MSC:
93C85 Automated systems (robots, etc.) in control theory
70E60 Robot dynamics and control of rigid bodies
93B12 Variable structure systems
94C12 Fault detection; testing in circuits and networks
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ceglarek, D.; Colledani, M.; Váncza, J.; Kim, D.-Y.; Marine, C.; Kogel-Hollacher, M.; Mistry, A.; Bolognese, L., Rapid deployment of remote laser welding processes in automotive assembly systems, CIRP Annals—Manufacturing Technology, 64, 1, 389-394, (2015)
[2] Ceglarek, D.; Huang, W.; Zhou, S.; Ding, Y.; Kumar, R.; Zhou, Y., Time-based competition in multistage manufacturing: stream-of-variation analysis (SOVA) methodology—Review, International Journal of Flexible Manufacturing Systems, 16, 1, 11-111, (2004) · Zbl 1093.90009
[3] Tolio, T.; Ceglarek, D.; Elmaraghy, H. A.; Fischer, A.; Hu, S. J.; Laperrière, L.; Newman, S. T.; Váncza, J., SPECIES-Co-evolution of products, processes and production systems, CIRP Annals - Manufacturing Technology, 59, 2, 672-693, (2010)
[4] Ceglarek, D.; Li, H. F.; Tang, Y., Modeling and optimization of end effector layout for handling compliant sheet metal parts, Journal of Manufacturing Science and Engineering, 123, 3, 473-480, (2001)
[5] Ceglarek, D.; Shi, J., Fixture failure diagnosis for autobody assembly using pattern recognition, Journal of Engineering for Industry—Transactions of the ASME, 118, 1, 55-66, (1996)
[6] Ceglarek, D.; Shi, J., Fixture failure diagnosis for sheet metal assembly with consideration of measurement noise, Transactions of the ASME, Journal of Manufacturing Science and Engineering, 121, 4, 771-777, (1999)
[7] Ding, Y.; Ceglarek, D.; Shi, J., Fault diagnosis of multistage manufacturing processes by using state space approach, Journal of Manufacturing Science and Engineering, 124, 2, 313-322, (2002)
[8] Ding, Y.; Shi, J.; Ceglarek, D., Diagnosability analysis of multi-station manufacturing processes, Journal of Dynamic Systems, Measurement and Control, 124, 1, 1-13, (2002)
[9] Kong, Z.; Ceglarek, D.; Huang, W., Multiple fault diagnosis method in multistation assembly processes using orthogonal diagonalization analysis, Journal of Manufacturing Science and Engineering, 130, 1, (2008)
[10] Ceglarek, D.; Prakash, P. K. S., Enhanced piecewise least squares approach for diagnosis of ill-conditioned multistation assembly with compliant parts, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226, 3, 485-502, (2012)
[11] Wang, H.; Ceglarek, D., Quality-driven sequence planning and line configuration selection for compliant structure assemblies, CIRP Annals—Manufacturing Technology, 54, 1, 31-35, (2005)
[12] Ding, Y.; Kim, P.; Ceglarek, D.; Jin, J., Optimal sensor distribution for variation diagnosis in multistation assembly processes, IEEE Transactions on Robotics and Automation, 19, 4, 543-556, (2003)
[13] Gertler, J. J., Survey of model-based failure detection and isolation in complex plants, IEEE Control Systems Magazine, 8, 6, 3-11, (1988)
[14] Freyermuth, B., An approach to model based fault diagnosis of industrial robots, Proceedings of the IEEE International Conference on Robotics and Automation
[15] Vemuri, A. T.; Polycarpou, M. M., Neural-network-based robust fault diagnosis in robotic systems, IEEE Transactions on Neural Networks, 8, 6, 1410-1420, (1997)
[16] Vemuri, A. T.; Polycarpou, M. M.; Diakourtis, S. A., Neural network based fault detection in robotic manipulators, IEEE Transactions on Robotics and Automation, 14, 2, 342-348, (1998)
[17] Song, Q.; Yin, L., Robust adaptive fault accommodation for a robot system using a radial basis function neural network, International Journal of Systems Science, 32, 2, 195-204, (2001) · Zbl 1002.93535
[18] Song, Q.; Hu, W. J.; Yin, L.; Soh, Y. C., Robust adaptive dead zone technology for fault-tolerant control of robot manipulators using neural networks, Journal of Intelligent and Robotic Systems: Theory and Applications, 33, 2, 113-137, (2002) · Zbl 1047.93546
[19] Utkin, V. I., Sliding Modes in Control and Optimization, (1992), Berlin, Germany: Springer, Berlin, Germany · Zbl 0748.93044
[20] Xiong, Y.; Saif, M., Sliding mode observer for nonlinear uncertain systems, IEEE Transactions on Automatic Control, 46, 12, 2012-2017, (2001) · Zbl 1003.93007
[21] Edwards, C.; Spurgeon, S. K.; Patton, R. J., Sliding mode observers for fault detection and isolation, Automatica, 36, 4, 541-553, (2000) · Zbl 0968.93502
[22] Saif, M.; Xiong, Y., Sliding mode observers and their application in fault diagnosis, Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances. Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances, Springer Tracts in Advanced Robotics (STAR), 1, 1-57, (2003), Springer · Zbl 1043.93012
[23] Yan, X.-G.; Edwards, C., Adaptive sliding-mode-observer-based fault reconstruction for nonlinear systems with parametric uncertainties, IEEE Transactions on Industrial Electronics, 55, 11, 4029-4036, (2008)
[24] Bartolini, G.; Ferrara, A.; Usai, E., Chattering avoidance by second-order sliding mode control, IEEE Transactions on Automatic Control, 43, 2, 241-246, (1998) · Zbl 0904.93003
[25] Ferrara, A.; Rubagotti, M., A sub-optimal second order sliding mode controller for systems with saturating actuators, IEEE Transactions on Automatic Control, 54, 5, 1082-1087, (2009) · Zbl 1367.93121
[26] Bartolini, G.; Pisano, A.; Punta, E.; Usai, E., A survey of applications of second-order sliding mode control to mechanical systems, International Journal of Control, 76, 9-10, 875-892, (2003) · Zbl 1070.93011
[27] Levant, A., Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 58, 6, 1247-1263, (1993) · Zbl 0789.93063
[28] Van, M.; Kang, H.-J.; Shin, K.-S., Backstepping quasi-continuous high-order sliding mode control for a Takagi-Sugeno fuzzy system with an application for a two-link robot control, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228, 9, 1488-1500, (2014)
[29] Mien, V.; Kang, H.-J.; Shin, K.-S., Adaptive fuzzy quasi-continuous high-order sliding mode controller for output feedback tracking control of robot manipulators, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228, 1, 90-107, (2014)
[30] Davila, J.; Fridman, L.; Levant, A., Second-order sliding-mode observer for mechanical systems, IEEE Transactions on Automatic Control, 50, 11, 1785-1789, (2005) · Zbl 1365.93071
[31] Davila, J.; Fridman, L.; Poznyak, A., Observation and identification of mechanical systems via second order sliding modes, International Journal of Control, 79, 10, 1251-1262, (2006) · Zbl 1330.93045
[32] Van, M.; Kang, H.-J.; Suh, Y.-S., Second order sliding mode-based output feedback tracking control for uncertain robot manipulators, International Journal of Advanced Robotic System, 10, article 16, (2013)
[33] Van, M.; Kang, H.-J.; Suh, Y.-S.; Shin, K.-S., A robust fault diagnosis and accommodation scheme for robot manipulators, International Journal of Control, Automation and Systems, 11, 2, 377-388, (2013)
[34] Van, M.; Kang, H.-J.; Suh, Y.-S., A novel neural second-order sliding mode observer for robust fault diagnosis in robot manipulators, International Journal of Precision Engineering and Manufacturing, 14, 3, 397-406, (2013)
[35] Wu, Q.; Saif, M., Robust fault diagnosis of a satellite system using a learning strategy and second order sliding mode observer, IEEE Systems Journal, 4, 1, 112-121, (2010)
[36] Van, M.; Kang, H.-J.; Suh, Y.-S., A novel fuzzy second-order sliding mode observer-controller for a T-S fuzzy system with an application for robot control, International Journal of Precision Engineering and Manufacturing, 14, 10, 1703-1711, (2013)
[37] Capisani, L. M.; Ferrara, A.; Ferreira De Loza, A.; Fridman, L. M., Manipulator fault diagnosis via higher order sliding-mode observers, IEEE Transactions on Industrial Electronics, 59, 10, 3979-3986, (2012)
[38] Fridman, L.; Levant, A.; Davila, J., Observation of linear systems with unknown inputs via high-order sliding-modes, International Journal of Systems Science, 38, 10, 773-791, (2007) · Zbl 1128.93312
[39] Fraguela, L.; Fridman, L.; Alexandrov, V. V., Position stabilization of a Stewart platform: high-order sliding mode observers based approach, Journal of the Franklin Institute, 349, 2, 441-455, (2012) · Zbl 1254.93142
[40] Van, M.; Kang, H.-J.; Suh, Y.-S.; Shin, K.-S., Output feedback tracking control of uncertain robot manipulators via higher-order sliding-mode observer and fuzzy compensator, Journal of Mechanical Science and Technology, 27, 8, 2487-2496, (2013)
[41] Gao, Z.; Cecati, C.; Ding, S. X., A survey of fault diagnosis and fault-tolerant techniques—part I: fault diagnosis with model-based and signal-based approaches, IEEE Transactions on Industrial Electronics, 62, 6, 3757-3767, (2015)
[42] Jiang, J.; Yu, X., Fault-tolerant control systems: a comparative study between active and passive approaches, Annual Reviews in Control, 36, 1, 60-72, (2012)
[43] Van, M.; Ge, S. S.; Ren, H., Robust fault tolerant control for a class second-order nonlinear systems using an adaptive third-order sliding mode control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, (2016)
[44] Benosman, M.; Lum, K.-Y., Passive actuators’ fault-tolerant control for affine nonlinear systems, IEEE Transactions on Control Systems Technology, 18, 1, 152-163, (2010)
[45] Wang, R.; Wang, J., Passive actuator fault-tolerant control for a class of overactuated nonlinear systems and applications to electric vehicles, IEEE Transactions on Vehicular Technology, 62, 3, 972-985, (2013)
[46] Zhang, X.; Parisini, T.; Polycarpou, M. M., Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach, IEEE Transactions on Automatic Control, 49, 8, 1259-1274, (2004) · Zbl 1365.93250
[47] Van, M.; Ge, S. S.; Ren, H., Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control, IEEE Transactions on Cybernetics, (2016)
[48] Van, M.; Kang, H.-J., Robust fault-tolerant control for uncertain robot manipulators based on adaptive quasi-continuous high-order sliding mode and neural network, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229, 8, 1425-1446, (2015)
[49] Capisani, L. M.; Ferrara, A.; Magnani, L., Design and experimental validation of a second-order sliding-mode motion controller for robot manipulators, International Journal of Control, 82, 2, 365-377, (2009) · Zbl 1168.93321
[50] Moreno, J. A.; Osorio, M., A Lyapunov approach to second-order sliding mode controllers and observers, Proceedings of the 47th IEEE Conference on Decision and Control (CDC ’08)
[51] Armstrong, B.; Khatib, O.; Burdick, J., The explicit dynamic model and inertial parameters of the PUMA 560 arm, Proceedings of the IEEE International Conference on Robotics and Automation
[52] Van, M.; Wu, D.; Ge, S. S.; Ren, H., Fault diagnosis in image-based visual servoing with eye-in-hand configuration using Kalman filter, IEEE Transactions on Industrial Informatics, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.