×

zbMATH — the first resource for mathematics

Finite element analyses and simulations of gears and gear drives: a bibliography 1997–2006. (English) Zbl 1257.70001
Summary: Purpose: The finite element method (FEM) has become the prevalent technique used for analyzing physical phenomena in the field of structural, solid and fluid mechanics. The output of scientific papers is fast growing and professionals are no longer able to be fully up-to-date with all the relevant information. The purpose of this paper is to provide a bibliographical review on the application of FEM in mechanical engineering, specifically for the analyses and simulations of gears and gear drives from the theoretical as well as practical points of view.
Design/methodology/approach: The following topics on gears and gear drives are handled from the computational points of view: gears in general, spur gears, helical gears, spiral bevel and hypoid gears, worm gears and other gear types and gear drives. The paper is organized into two parts. In the first one each topic is handled in a short text, relevant keywords are presented and current trends in applications of finite element techniques are briefly mentioned. The second part lists references of papers published for the period 1997–2006.
Findings: This bibliography is intended to serve the needs of engineers and researchers as a comprehensive source of published papers on design, analysis and simulation of gears and gear drives.
Originality/value: The bibliography listed is by no means complete but it gives a comprehensive representation of different finite element applications on the subjects. It will save time for readers looking for information dealing with described subjects, not having an access to large databases or willingness to spend time with uncertain information retrieval.
MSC:
70-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to mechanics of particles and systems
74-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to mechanics of deformable solids
70B15 Kinematics of mechanisms and robots
70E55 Dynamics of multibody systems
74S05 Finite element methods applied to problems in solid mechanics
74M15 Contact in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] gears in general
[2] Each, finite element static and dynamic analysis
[3] deflection and stress analysis
[4] scientific journals, conference proceedings, and theses/dissertations retrospectively to 1997.
[5] DOI: 10.1111/j.1747-1567.2001.tb00036.x · doi:10.1111/j.1747-1567.2001.tb00036.x
[6] DOI: 10.1016/S0094-114X(01)00062-3 · Zbl 1140.70315 · doi:10.1016/S0094-114X(01)00062-3
[7] Crippa, G. et al. (1998), ”Design of plastic gears for power transmission”, 56th Ann. Tech. Conf., ANTEC, Atlanta, pp.2998-3002.
[8] Deng, G. and Nakanishi, T. (2001), ”Bending tooth root stress decrease using an asymmetric tooth profile”, Int. Conf. Mech. Transmiss., Chongqing, pp.404-407.
[9] DOI: 10.1299/jsmec.46.1171 · doi:10.1299/jsmec.46.1171
[10] Di Francesco G., Gear Technol. 14 (5) pp 47– (1997)
[11] Gananau S., UPB Sci. Bull., Ser. D 61 (3) pp 225– (1999)
[12] Guilbault R., VDI Berichte (1904) pp 651– (2005)
[13] DOI: 10.1016/j.cma.2004.10.010 · Zbl 1151.74392 · doi:10.1016/j.cma.2004.10.010
[14] DOI: 10.1115/1.1371477 · doi:10.1115/1.1371477
[15] DOI: 10.4028/www.scientific.net/KEM.243-244.129 · doi:10.4028/www.scientific.net/KEM.243-244.129
[16] Li J., Model. Measur. Contr. B 64 (1) pp 17– (1997)
[17] DOI: 10.1002/(SICI)1099-0887(1998100)14:10<963::AID-CNM202>3.0.CO;2-E · Zbl 0913.73067 · doi:10.1002/(SICI)1099-0887(1998100)14:10<963::AID-CNM202>3.0.CO;2-E
[18] Li J., Model. Measur. Contr. B 66 (1) pp 1– (1998)
[19] Li J., Model. Measur. Contr. B 66 (2) pp 1– (1998)
[20] DOI: 10.1002/(SICI)1099-0887(199908)15:8<579::AID-CNM271>3.0.CO;2-2 · Zbl 0969.74585 · doi:10.1002/(SICI)1099-0887(199908)15:8<579::AID-CNM271>3.0.CO;2-2
[21] DOI: 10.1115/1.1427928 · doi:10.1115/1.1427928
[22] Lin, C. et al. (2001), ”On affected factors of the tooth root stress for cylindrical gear by finite element analyses”, Int. Conf. Mech. Transmiss., Chongqing, pp.417-420.
[23] Lu Y., Machine Design Res. 14 (2) pp 37– (1998)
[24] Moriwaki, I. et al. (2005), ”Finite element analysis of gear tooth stress with tooth flank film elements”, VDI Berichte,No. 1904, pp.39-53.
[25] Parker, R. G. (2001), ”Mesh phasing for epicyclic gear vibration reduction”, Int. Conf. Mech. Transmiss., Chongqing, pp.53-57.
[26] DOI: 10.1115/1.1758252 · doi:10.1115/1.1758252
[27] Talbert, P. B. and Jankowich, E. M. (2005), ”Effect of tooth load distribution on bull gear vibration”, ASME Int. Design Eng. Tech. Conf., Long Beach, CA, Vol.5, pp.829-841.
[28] DOI: 10.1016/S0022-460X(03)00407-3 · doi:10.1016/S0022-460X(03)00407-3
[29] Tsai, S. J. and Wu, S. H. (2005), ”Experimental and numerical root stress analysis of conical gears”, VDI Berichte,No.1904, pp.1127-1144.
[30] DOI: 10.1006/jsvi.1997.1298 · doi:10.1006/jsvi.1997.1298
[31] Wang Y., Chinese J. Mech. Eng. 12 (2) pp 91– (1999)
[32] DOI: 10.1016/S0094-114X(00)00053-7 · Zbl 1140.70447 · doi:10.1016/S0094-114X(00)00053-7
[33] DOI: 10.1023/A:1013361206009 · Zbl 1015.70004 · doi:10.1023/A:1013361206009
[34] DOI: 10.1006/jsvi.2000.3197 · doi:10.1006/jsvi.2000.3197
[35] Xie W. B., J. Shanghai Jiaotong Univ. 10 pp 303– (2005)
[36] DOI: 10.1002/1521-396X(200202)189:3<1057::AID-PSSA1057>3.0.CO;2-I · doi:10.1002/1521-396X(200202)189:3<1057::AID-PSSA1057>3.0.CO;2-I
[37] DOI: 10.1016/S0045-7949(98)00185-0 · Zbl 0941.74530 · doi:10.1016/S0045-7949(98)00185-0
[38] Bajpai, P. et al. (2003), ”A surface wear prediction model for parallel-axis gear pairs”, ASME Design Eng. Tech. Conf., Chicago, IL, Vol.4, pp.817-826.
[39] DOI: 10.1115/1.1691433 · doi:10.1115/1.1691433
[40] Barone, S. et al. (2001), ”CAD/FEM analysis of teeth contact stress and load share in face gears”, ASME Design Eng. Tech. Conf., ASME, Pittsburgh, PA, pp.185-190.
[41] Bercsey T., VDI Berichte (1665) pp 91– (2002)
[42] DOI: 10.1016/S0043-1648(03)00338-7 · doi:10.1016/S0043-1648(03)00338-7
[43] DOI: 10.1243/0309324991513957 · doi:10.1243/0309324991513957
[44] Demkowicz L., ASME Noise Contr. Acoust. Div. 26 pp 169– (1999)
[45] DOI: 10.1016/S0045-7825(00)00232-2 · Zbl 1029.74044 · doi:10.1016/S0045-7825(00)00232-2
[46] Dooner D. B., Gear Technol. 18 (3) pp 31– (2001)
[47] Duong, L. et al. (2002), ”Evaluation of ring gear tooth stress”, ASME Design Eng. Tech. Conf., ASME, Montreal, Vol.4, pp.363-369.
[48] Eritenel, T. et al. (2003), ”Effect of tooth deflection and corner contact on backside separation (backlash) of gear pairs”, ASME Design Eng. Tech. Conf., Chicago, IL, Vol.4, pp.103-110.
[49] Gunda, R. and Singh, R. (2003), ”Dynamic analysis of sliding friction in a gear pair”, ASME Design Eng. Tech. Conf., ASME, Chicago, IL, pp.441-448.
[50] DOI: 10.1115/1.1485290 · doi:10.1115/1.1485290
[51] Lin, T. et al. (2001), ”Nonlinear dynamic contact analysis of meshing gears”, ICMT 2001, Chongqing, pp.248-251.
[52] DOI: 10.1115/1.1286189 · doi:10.1115/1.1286189
[53] Song, Y. and Su, D. (2001), ”Gear solid modelling and tooth contact analysis: state of the art”, Int. Conf. Mech. Transmiss., Chongqing, pp.148-153.
[54] Song, Y. et al. (2001), ”Loaded multi-tooth contact analysis of spiroid gears by surface-to-surface contact analysis using the finite element method”, Int. Conf. Mech. Transmiss., Chongqing, pp.131-136.
[55] Tang, Q. et al. (2001), ”Study on tooth contact characteristics of internal gearing with small tooth number difference gear drive”, Int. Conf. Mech. Transmiss., Chongqing, pp.432-434.
[56] Ueda, A. et al. (2005), ”The frictional coefficient and the simulation of plastic gears using basic experimental data”, VDI Berichte,No. 1904, pp.1367-1383.
[57] DOI: 10.1016/S0020-7403(98)00073-3 · Zbl 0985.74075 · doi:10.1016/S0020-7403(98)00073-3
[58] Abersek B., Struct. Mater. 14 pp 71–
[59] DOI: 10.1016/S0142-1123(02)00034-8 · doi:10.1016/S0142-1123(02)00034-8
[60] Bian, X. et al. (2001), ”Analysis of random fracture of gear tooth”, Int. Conf. Mech. Transmiss., Chongqing, pp.442-444.
[61] Borgianni, L. et al. (2003), ”Application of a multiaxial fatigue criterion for the evaluation of life of gears of complex geometry”, ASME Design Eng. Tech. Conf., Chicago, IL, Vol.4, pp.3-9.
[62] DOI: 10.1115/1.1349420 · doi:10.1115/1.1349420
[63] Fajdiga G., Damage Fract. Mech. VI pp 73–
[64] DOI: 10.1046/j.1460-2695.2003.00711.x · doi:10.1046/j.1460-2695.2003.00711.x
[65] DOI: 10.1111/j.1460-2695.1997.tb00403.x · doi:10.1111/j.1460-2695.1997.tb00403.x
[66] DOI: 10.1016/S0043-1648(97)00008-2 · doi:10.1016/S0043-1648(97)00008-2
[67] Glodez S., Computers Struct. 73
[68] DOI: 10.1002/cnm.427 · Zbl 1154.74382 · doi:10.1002/cnm.427
[69] DOI: 10.1016/S0142-1123(02)00024-5 · Zbl 1139.74442 · doi:10.1016/S0142-1123(02)00024-5
[70] DOI: 10.1016/S0013-7944(03)00049-3 · doi:10.1016/S0013-7944(03)00049-3
[71] DOI: 10.1016/S1350-6307(01)00002-4 · doi:10.1016/S1350-6307(01)00002-4
[72] Guagliano, M. et al. (2003), ”A weight-functions based approach to predict rolling contact fatigue sub-surface crack propagation in gears”, ASME Design Eng. Tech. Conf., ASME, Chicago, IL, Vol.4, pp.179-186.
[73] DOI: 10.1299/kikaic.70.3572 · doi:10.1299/kikaic.70.3572
[74] DOI: 10.4028/www.scientific.net/MSF.426-432.4221 · doi:10.4028/www.scientific.net/MSF.426-432.4221
[75] Kramberger, J. et al. (2002), ”Computational model for analysis of bending fatigue in gears”, 6th Int. Conf. Comput. Struct. Tech., Prague, Civil-Comp, pp.171-172.
[76] DOI: 10.1016/j.compstruc.2003.10.028 · doi:10.1016/j.compstruc.2003.10.028
[77] DOI: 10.4050/JAHS.47.64 · doi:10.4050/JAHS.47.64
[78] DOI: 10.1115/1.2828793 · doi:10.1115/1.2828793
[79] Lewicki D. G., Gear Technol. 14 (6) pp 18– (1997)
[80] Lewicki, D. G. and Ballarini, R. (1997c), ”Gear crack propagation life studies”, NASA Conf. Publ., No. 10193/2, pp.1-22.
[81] DOI: 10.1023/A:1007368801853 · doi:10.1023/A:1007368801853
[82] Lewicki D. G., Tribo Test. 5 (2) pp 157– (1998)
[83] Lewicki D. G., Gear Technol. 19 (1) pp 14– (2002)
[84] DOI: 10.1016/j.ijfatigue.2004.08.002 · Zbl 1177.74334 · doi:10.1016/j.ijfatigue.2004.08.002
[85] MackAldener M., Gear Technol. 17 (6) pp 18– (2000)
[86] DOI: 10.1046/j.1460-2695.2000.00292.x · doi:10.1046/j.1460-2695.2000.00292.x
[87] DOI: 10.1016/S0013-7944(02)00016-4 · doi:10.1016/S0013-7944(02)00016-4
[88] Ohue, Y. et al. (2003), ”Spalling fatigue life assessment of surface hardened sintered gears based on fracture mechanics”, ASME Design Eng. Tech. Conf., ASME, Vol.4, pp.25-30.
[89] DOI: 10.1007/s004660050300 · Zbl 0918.73105 · doi:10.1007/s004660050300
[90] DOI: 10.1002/mawe.200500858 · doi:10.1002/mawe.200500858
[91] Vergani, L. and Guagliano, M. (2003), ”Prediction of the propagation of an internal crack under rolling contact loads by a weight function approach”, Key Eng. Mater., Vol. 251-252,
[92] Weck M., VDI Berichte (1665) pp 881– (2002)
[93] Yoshida, A. et al. (2001), ”Fatigue life assessment of surface hardened sintered roller under sliding rolling contact condition”, ICMT 2001, Chongqing, pp.472-477.
[94] DOI: 10.1243/030932403770735890 · doi:10.1243/030932403770735890
[95] DOI: 10.4028/www.scientific.net/KEM.251-252.165 · doi:10.4028/www.scientific.net/KEM.251-252.165
[96] DOI: 10.1016/j.ijfatigue.2003.11.003 · doi:10.1016/j.ijfatigue.2003.11.003
[97] DOI: 10.1016/S0168-874X(00)00063-9 · Zbl 1163.74549 · doi:10.1016/S0168-874X(00)00063-9
[98] DOI: 10.1046/j.1460-2695.2000.00268.x · doi:10.1046/j.1460-2695.2000.00268.x
[99] DOI: 10.1016/S0007-8506(07)60688-X · doi:10.1016/S0007-8506(07)60688-X
[100] DOI: 10.1016/j.jmatprotec.2004.01.019 · doi:10.1016/j.jmatprotec.2004.01.019
[101] DOI: 10.1016/S0020-7683(03)00250-6 · doi:10.1016/S0020-7683(03)00250-6
[102] DOI: 10.1243/0954405042323432 · doi:10.1243/0954405042323432
[103] DOI: 10.1177/095440540421801210 · doi:10.1177/095440540421801210
[104] Ferguson B. L., ASM Proc. Heat Treat. pp 79– (2000)
[105] DOI: 10.1016/j.jmatprotec.2005.02.137 · doi:10.1016/j.jmatprotec.2005.02.137
[106] DOI: 10.1016/S0924-0136(00)00659-2 · doi:10.1016/S0924-0136(00)00659-2
[107] DOI: 10.1243/095440603321919590 · doi:10.1243/095440603321919590
[108] DOI: 10.1016/S0924-0136(01)01050-0 · doi:10.1016/S0924-0136(01)01050-0
[109] Martikka H., Comput. Exper. Meth. 8 pp 125– (2003)
[110] DOI: 10.1115/1.482802 · doi:10.1115/1.482802
[111] Miyachika K., VDI Berichte (1665) pp 583– (2002)
[112] DOI: 10.2472/jsms.52.801 · doi:10.2472/jsms.52.801
[113] DOI: 10.1016/S0924-0136(01)00508-8 · doi:10.1016/S0924-0136(01)00508-8
[114] DOI: 10.1016/S0007-8506(07)60094-8 · doi:10.1016/S0007-8506(07)60094-8
[115] Predki W., VDI Berichte (1665) pp 263– (2002)
[116] DOI: 10.1016/S0955-2219(03)00240-1 · doi:10.1016/S0955-2219(03)00240-1
[117] Scheer, C. et al. (2005), ”Nondestructive determination of hardness values and dynamic load test of precision forged components”, VDI Berichte,No. 1904, pp.1243-1266.
[118] DOI: 10.1299/kikaic.71.251 · doi:10.1299/kikaic.71.251
[119] Weale, D. J. et al. (1998), ”Effect of fibre orientation and distribution on the tooth stiffness of a polymer composite gear”, 56th Ann. Tech. Conf., ANTEC, Atlanta, pp.3008-3012.
[120] Weale D. J., J. Reinf. Plast. Compos. 18 (5) pp 454– (1999)
[121] DOI: 10.1504/IJCAT.2002.000291 · doi:10.1504/IJCAT.2002.000291
[122] DOI: 10.1016/j.finel.2004.02.002 · doi:10.1016/j.finel.2004.02.002
[123] Cantone, C. et al. (2005), ”Effects of gear meshing distributed formulation on bearing forces”, VDI Berichte,No. 1904, pp.611-631.
[124] Ganz, K. and Muller, M. (2005), ”Structural mechanics analysis of gear unit components in the development process using the finite element method”, VDI Berichte,No.1904, pp.247-268.
[125] Goldfarb, V. I. et al. (2003), ”Advanced computer modeling technique in gear engineering”, ASME Design Eng. Tech. Conf., Chicago, IL, Vol.4, pp.579-583.
[126] Inoue T., J. Phys. IV 120 pp 3– (2004)
[127] Kawalec A., Comp. Assist. Mech. Eng. Sci. 7 (4) pp 571– (2000)
[128] DOI: 10.1016/S0168-874X(01)00057-9 · Zbl 1081.74555 · doi:10.1016/S0168-874X(01)00057-9
[129] Moriwaki, I. et al. (2003), ”Stress analysis of face gear tooth subject to distributed load (using global local finite element method (GLFEM))”, ASME Design Eng. Tech. Conf., Chicago, IL, Vol.4, pp.289-296.
[130] Smith, K. B. and Filler, R. R. (2004), ”Face gear finite element stress analysis tool development”, 60th Ann. Forum Proc., AHS, Baltimore, MD, pp.1238-1250.
[131] Yang, S. H. and Wang, Q. (2001), ”The trend of computer’s application in shearer viewed from usage of FEM in the gear”, 29th Int. Symp. Comp. Appl. Mineral Ind., Beijing, pp.431-434.
[132] DOI: 10.1115/1.1511172 · doi:10.1115/1.1511172
[133] DOI: 10.1115/1.1511173 · doi:10.1115/1.1511173
[134] Fresko, M. et al. (2004), ”The use of finite element analyses in understanding alignment and load distribution in large grinding mill gear and pinion sets”, 2004 SME Ann. Meet., Denver, CO, pp.21-29.
[135] Han, X. et al. (2001), ”An analytical investigation of coupling vibration and noise characteristics of gear system”, ICMT 2001, Chongqing, pp.368-370.
[136] Kapelevich A. L., Gear Technol. 20 (5) pp 44– (2003)
[137] DOI: 10.1243/095441003765208745 · doi:10.1243/095441003765208745
[138] DOI: 10.1002/ls.3010150402 · doi:10.1002/ls.3010150402
[139] DOI: 10.1016/j.mechmachtheory.2003.06.001 · Zbl 1116.70305 · doi:10.1016/j.mechmachtheory.2003.06.001
[140] DOI: 10.1115/1.1462044 · doi:10.1115/1.1462044
[141] DOI: 10.1016/j.finel.2004.02.002 · doi:10.1016/j.finel.2004.02.002
[142] DOI: 10.1243/0954406981521222 · doi:10.1243/0954406981521222
[143] Glodez, S. and Ren, Z. (1998), ”3D computational analysis of stresses in the tooth root of spur gears”, 4th World Cong. Comput. Mech., Buenos Aires, pp.188.
[144] DOI: 10.1243/0954405041897185 · doi:10.1243/0954405041897185
[145] Li J., Model. Measur. Contr. B 63 (2) pp 45– (1997)
[146] DOI: 10.1299/kikaic.63.4017 · doi:10.1299/kikaic.63.4017
[147] DOI: 10.1243/095440602760400977 · doi:10.1243/095440602760400977
[148] Mahanta P. K., J. Inst. Eng. (India) Mech. Eng. Div. 81 (3) pp 105– (2000)
[149] DOI: 10.1299/kikaic.63.2111 · doi:10.1299/kikaic.63.2111
[150] DOI: 10.1016/j.finel.2003.10.003 · doi:10.1016/j.finel.2003.10.003
[151] DOI: 10.1006/jsvi.2000.3067 · doi:10.1006/jsvi.2000.3067
[152] DOI: 10.1016/S0094-114X(02)00022-8 · Zbl 1126.70306 · doi:10.1016/S0094-114X(02)00022-8
[153] Pramono A. S., ESA SP (428) pp 725– (1999)
[154] Ramamurti V., J. Inst. Eng. (India) Mech. Eng. Div. 82 (1) pp 33– (2001)
[155] DOI: 10.1016/S0094-114X(97)00112-2 · Zbl 1052.70538 · doi:10.1016/S0094-114X(97)00112-2
[156] DOI: 10.1016/S0045-7949(01)00014-1 · doi:10.1016/S0045-7949(01)00014-1
[157] Smith, K. B. and Filler, R. R. (2004), ”Face gear finite element stress analysis tool development”, 56th Ann. Tech. Conf.60th Ann. Forum Proc., AHS, Baltimore, MD, pp.1238-1250.
[158] Talbert, P. B. and Jankowich, E. M. (2005), ”Effect of tooth load distribution on bull gear vibration”, ASME Int. Design Eng. Tech. Conf., Long Beach, CA, Vol.5, pp.829-841.
[159] Tamminana, V. K. et al. (2005), ”A study of the relationship between the dynamic factor and the dynamic transmission error of spur gear pairs”, ASME Int. Design Eng. Tech. Conf., Long Beach, CA, Vol.5, pp.917-927.
[160] DOI: 10.1016/S0168-874X(97)81968-3 · Zbl 0915.73063 · doi:10.1016/S0168-874X(97)81968-3
[161] DOI: 10.1243/095440604322787009 · doi:10.1243/095440604322787009
[162] DOI: 10.1115/1.2114891 · doi:10.1115/1.2114891
[163] Wang, Y. et al. (2001), ”Stresses analysis of spur gears considering the thermal and inertia loads by using the finite element method”, Int. Conf. Mech. Transmiss., Chongqing, pp.408-411.
[164] DOI: 10.1115/1.1691433 · doi:10.1115/1.1691433
[165] Chaouachi, F. and Zghal, A. (2005), ”Study of the stress contact spur gear, using the numerical asymptotic method and the classical contact law”, Proc. World Tribology Cong. III, ASME, Washington, DC, pp.195-196.
[166] DOI: 10.1006/mssp.2001.1414 · doi:10.1006/mssp.2001.1414
[167] DOI: 10.1299/kikaic.63.585 · doi:10.1299/kikaic.63.585
[168] DOI: 10.1243/0954406011520850 · doi:10.1243/0954406011520850
[169] DOI: 10.1081/SME-200045797 · doi:10.1081/SME-200045797
[170] DOI: 10.1081/SME-100107621 · doi:10.1081/SME-100107621
[171] DOI: 10.1081/SME-100104481 · doi:10.1081/SME-100104481
[172] DOI: 10.1016/j.jsv.2003.10.057 · doi:10.1016/j.jsv.2003.10.057
[173] DOI: 10.1006/jsvi.2000.3067 · doi:10.1006/jsvi.2000.3067
[174] Quinones A., ASME Design Eng. Div., ASME, DE 118 pp 763– (2005)
[175] DOI: 10.1016/S0045-7949(01)00014-1 · doi:10.1016/S0045-7949(01)00014-1
[176] DOI: 10.1115/1.1843154 · doi:10.1115/1.1843154
[177] DOI: 10.1016/j.wear.2004.08.005 · doi:10.1016/j.wear.2004.08.005
[178] DOI: 10.1016/S0142-1123(02)00034-8 · doi:10.1016/S0142-1123(02)00034-8
[179] DOI: 10.1111/j.1460-2695.1997.tb00321.x · doi:10.1111/j.1460-2695.1997.tb00321.x
[180] DOI: 10.1006/mssp.2001.1414 · doi:10.1006/mssp.2001.1414
[181] DOI: 10.1016/S0013-7944(03)00024-9 · doi:10.1016/S0013-7944(03)00024-9
[182] Miyachika, K. et al. (2005), ”Residual stress and bending fatigue strength of case-carburized thin-rimmed spur gears with symmetric web arrangements: effects of carburized parts”, VDI Berichte,No. 1904, pp.1203-1218.
[183] DOI: 10.1016/S0168-874X(02)00063-X · Zbl 1213.74300 · doi:10.1016/S0168-874X(02)00063-X
[184] Smith, K. B. and Filler, R. R. (2004), ”Face gear finite element stress analysis tool development”, 60th Ann. Forum Proc., AHS, Baltimore, MD, pp.1238-1250.
[185] Wakha C., Ann. Forum Proc. - Am. Helicopter Soc., AHS, Baltimore, MD pp 919– (2004)
[186] DOI: 10.1016/S0142-1123(99)00011-0 · doi:10.1016/S0142-1123(99)00011-0
[187] DOI: 10.1016/S0168-874X(00)00063-9 · Zbl 1163.74549 · doi:10.1016/S0168-874X(00)00063-9
[188] Aziz, E. S. and Chassapis, C. (2004), ”Development of process optimization for an intelligent knowledge-based system for spur gear precision forging die design”, ASME Design Eng. Tech. Conf., ASME, Vol.1, pp.313-320.
[189] Aziz, E. S. and Chassapis, C. (2002), ”A knowledge-based approach to spur gear fabrication in precision forging process”, ASME Design Eng. Tech. Conf., ASME, Montreal, pp.505-515.
[190] Miyachika K., Trans. Mater. Heat Treat. 25 (5) pp 508– (2004)
[191] DOI: 10.1299/kikaic.70.1174 · doi:10.1299/kikaic.70.1174
[192] DOI: 10.1115/1.1688379 · doi:10.1115/1.1688379
[193] Wang G. C., Trans. Nonferr. Met. Soc. China 13 (4) pp 798– (2003)
[194] Aziz, E. S. and Chassapis, C. (2001), ”An intelligent system for spur gear design and analysis”, ASME Design Eng. Tech. Conf., Pittsburgh, PA, Vol.2, pp.277-286.
[195] DOI: 10.1177/106329302761689160 · doi:10.1177/106329302761689160
[196] DOI: 10.1016/S0045-7949(03)00260-8 · doi:10.1016/S0045-7949(03)00260-8
[197] DOI: 10.1016/j.jmatprotec.2004.04.178 · doi:10.1016/j.jmatprotec.2004.04.178
[198] DOI: 10.1299/kikaic.70.828 · doi:10.1299/kikaic.70.828
[199] DOI: 10.1016/S1631-0721(03)00083-4 · Zbl 1177.74310 · doi:10.1016/S1631-0721(03)00083-4
[200] DOI: 10.1002/ls.3010150402 · doi:10.1002/ls.3010150402
[201] DOI: 10.1016/j.mechmachtheory.2003.06.001 · Zbl 1116.70305 · doi:10.1016/j.mechmachtheory.2003.06.001
[202] DOI: 10.1016/S0022-460X(02)00920-3 · doi:10.1016/S0022-460X(02)00920-3
[203] DOI: 10.1115/1.1462044 · doi:10.1115/1.1462044
[204] Chang, S. et al. (2003), ”Tooth flank corrections of wide face width helical gears that accounts for shaft deflections”, ASME Design Eng. Tech. Conf., Chicago, IL, Vol.4, pp.567-574.
[205] Chang S., Gear Technol. 22 (1) pp 34– (2005)
[206] DOI: 10.1115/1.2893956 · doi:10.1115/1.2893956
[207] Gonzales-Perez, I. et al. (2005), ”New topology of helical and spur gear drives with modified motion graph”, VDI Berichte,No. 1904, pp.721-735.
[208] Kubur, M. et al. (2003), ”Dynamic analysis of multi-mesh helical gear sets by finite elements”, ASME Design Eng. Tech. Conf., ASME, Vol.4, pp.333-342.
[209] DOI: 10.1115/1.1760561 · doi:10.1115/1.1760561
[210] DOI: 10.1016/S0045-7825(02)00482-6 · Zbl 1083.74569 · doi:10.1016/S0045-7825(02)00482-6
[211] DOI: 10.1016/S0045-7825(03)00367-0 · Zbl 1054.70500 · doi:10.1016/S0045-7825(03)00367-0
[212] DOI: 10.1016/j.cma.2004.09.006 · Zbl 1131.74323 · doi:10.1016/j.cma.2004.09.006
[213] DOI: 10.1299/kikaic.69.743 · doi:10.1299/kikaic.69.743
[214] DOI: 10.1299/kikaic.69.752 · doi:10.1299/kikaic.69.752
[215] DOI: 10.1299/kikaic.63.3223 · doi:10.1299/kikaic.63.3223
[216] Park, C. I. L. (2005), ”Analysis of vibration transmission for helical gear system by spectrally formulated elements”, ASME Int. Design Eng. Tech. Conf., Long Beach, CA, Vol.5, pp.563-570.
[217] DOI: 10.1016/j.finel.2003.10.003 · doi:10.1016/j.finel.2003.10.003
[218] DOI: 10.1115/1.2826663 · doi:10.1115/1.2826663
[219] DOI: 10.1299/kikaic.63.1775 · doi:10.1299/kikaic.63.1775
[220] DOI: 10.1115/1.2828773 · doi:10.1115/1.2828773
[221] DOI: 10.1115/1.1691433 · doi:10.1115/1.1691433
[222] DOI: 10.1016/S0168-874X(01)00100-7 · Zbl 1100.74632 · doi:10.1016/S0168-874X(01)00100-7
[223] Gonzalez-Perez, I. et al. (2005), ”Modified surface topology of involute helical gears developed for improvement of bearing contact and reduction of transmission errors”, ASME Int. Design Eng. Tech. Conf., Long Beach, CA, Vol.5, pp.571-584.
[224] DOI: 10.1115/1.1992509 · doi:10.1115/1.1992509
[225] DOI: 10.1115/1.1899688 · doi:10.1115/1.1899688
[226] DOI: 10.1115/1.1485289 · doi:10.1115/1.1485289
[227] Doege E., Steel Res. 69 (4) pp 165– (1998)
[228] Ferguson B. L., ASM Proc. Heat Treat. pp 79– (2000)
[229] Ferguson B. L., Gear Technol. 19 (6) pp 20– (2002)
[230] DOI: 10.2472/jsms.50.598 · doi:10.2472/jsms.50.598
[231] Fukumoto M., Int. Surf. Eng. Cong., ASM, Columbus pp 324– (2003)
[232] DOI: 10.1108/02644409710180509 · Zbl 0983.74566 · doi:10.1108/02644409710180509
[233] DOI: 10.1243/0954405981515644 · doi:10.1243/0954405981515644
[234] DOI: 10.1177/106329302761689160 · doi:10.1177/106329302761689160
[235] DOI: 10.1016/j.cma.2004.09.009 · Zbl 1097.70004 · doi:10.1016/j.cma.2004.09.009
[236] Han, X. et al. (2001), ”An analytical investigation of coupling vibration and noise characteristics of gear system”, ICMT 2001, Chongqing, pp.368-370.
[237] DOI: 10.1299/jsmec.46.1178 · doi:10.1299/jsmec.46.1178
[238] DOI: 10.1016/S0045-7825(01)00316-4 · Zbl 0999.74084 · doi:10.1016/S0045-7825(01)00316-4
[239] De Vaujany, J. P. et al. (2005), ”Numerical and experimental study of the loaded transmission error of a spiral bevel gear”, ASME Int. Design Eng. Tech. Conf., Long Beach, CA, Vol.5, pp.909-915.
[240] Elkholy A. H., Int. J. Mater. Product Tech. 12 (4) pp 396– (1997)
[241] Handschuh, R. F. (1997), ”Recent advances in the analysis of spiral bevel gears”, NASA Conf. Publ., No. 10193/2, pp.37.
[242] Handschuh R. F., NASA Tech. Memo. (208903) pp 1– (1999)
[243] DOI: 10.1115/1.2829500 · doi:10.1115/1.2829500
[244] Li J., Model. Measur. Contr. B 64 (1) pp 33– (1997)
[245] Li J., Model. Measur. Contr. B 64 (1) pp 25– (1997)
[246] DOI: 10.1002/(SICI)1099-0887(199804)14:4<367::AID-CNM156>3.0.CO;2-P · Zbl 0906.73066 · doi:10.1002/(SICI)1099-0887(199804)14:4<367::AID-CNM156>3.0.CO;2-P
[247] DOI: 10.1016/j.mechmachtheory.2005.03.001 · Zbl 1159.70321 · doi:10.1016/j.mechmachtheory.2005.03.001
[248] DOI: 10.1016/S0094-114X(99)00071-3 · doi:10.1016/S0094-114X(99)00071-3
[249] DOI: 10.2493/jjspe.68.446 · doi:10.2493/jjspe.68.446
[250] DOI: 10.1115/1.1481364 · doi:10.1115/1.1481364
[251] Fuentes A., VDI Berichte (1665) pp 327– (2002)
[252] Li, R. et al. (2005), ”Finite element simulation of the dynamic contact/impact behavior of hypoid gears”, VDI Berichte,No. 1904, pp.581-590.
[253] DOI: 10.1016/S0094-114X(01)00086-6 · Zbl 1140.70402 · doi:10.1016/S0094-114X(01)00086-6
[254] Ural, A. et al. (2003), ”Simulating fatigue crack growth in spiral bevel gears using computational fracture mechanics”, ASME Design Eng. Tech. Conf., Chicago, IL, Vol.4, pp.195-199.
[255] DOI: 10.1016/j.engfracmech.2004.08.004 · doi:10.1016/j.engfracmech.2004.08.004
[256] DOI: 10.1016/S0924-0136(01)00701-4 · doi:10.1016/S0924-0136(01)00701-4
[257] Artoni, A. et al. (2005), ”Computerized generation, simulation of meshing and advanced contact stress analysis of spiral bevel gears via a new approach”, VDI Berichte,No. 1904 II, pp.1711-1718.
[258] Bibel G. D., Gear Technol. 14 (2) pp 44– (1997)
[259] Rao, F. et al. (2004), ”Automatic generation of a parameterized finite element model for hypoid gears”, ICMA 2004, Wuhan, pp.263-270.
[260] DOI: 10.1179/030192301678073 · doi:10.1179/030192301678073
[261] DOI: 10.1115/1.1414129 · doi:10.1115/1.1414129
[262] Qin D., Chinese J. Mech. Eng. 12 (4) pp 260– (1999)
[263] Xu, W. et al. (2005), ”The generation and simulation of worm-gear drive with localized contacts and minimum transmission error”, VDI Berichte,No. 1904, pp.213-227.
[264] DOI: 10.1243/0954406011524162 · doi:10.1243/0954406011524162
[265] DOI: 10.1016/S0094-114X(03)00104-6 · Zbl 1143.70367 · doi:10.1016/S0094-114X(03)00104-6
[266] DOI: 10.1016/j.mechmachtheory.2005.09.005 · Zbl 1143.70300 · doi:10.1016/j.mechmachtheory.2005.09.005
[267] Abousleiman, V. et al. (2005), ”Modeling of spur and helical gear planetary drives with flexible ring-gears and planet carriers”, ASME Int. Design Eng. Tech. Conf., ASME, Long Beach, CA, pp.711-722.
[268] Baguet, S. and Velex, P. (2005), ”Influence of the nonlinear dynamic behavior of journal bearings on gear-bearing assemblies”, ASME Int. Design Eng. Tech. Conf., Long Beach, CA, Vol.5, pp.735-745.
[269] Barone, S. et al. (2003), ”Evaluation of the effect of misalignment and profile modification in face gear drive by a finite element meshing simulation”, ASME Design Eng. Tech. Conf., ASME, Chicago, IL, Vol.4, pp.279-288.
[270] DOI: 10.1115/1.1767818 · doi:10.1115/1.1767818
[271] Bonori, G. et al. (2004), ”Stiffness evaluation and vibration in a tractor gear”, ASME Int. Mech. Eng. Cong. Expo., ASME, DE, Vol.117, pp.715-727.
[272] Choi J., Comput. Model. Eng. Sci. 3 (4) pp 431– (2002)
[273] DOI: 10.1016/S0890-6955(96)00017-X · doi:10.1016/S0890-6955(96)00017-X
[274] Crowther A. R., Acoust. Australia 32 (1) pp 19– (2004)
[275] Eritenel, T. and Parker, R. G. (2005), ”A static and dynamic model for three-dimensional multi-mesh gear systems”, ASME Int. Design Eng. Tech. Conf., Long Beach, CA, Vol.5, pp.945-956.
[276] DOI: 10.1109/20.573848 · doi:10.1109/20.573848
[277] Gonzales-Perez, I. et al. (2005), ”New topology of helical and spur gear drives with modified motion graph”, VDI Berichte,No. 1904, pp.721-735.
[278] DOI: 10.1115/1.2826665 · doi:10.1115/1.2826665
[279] Ha, K. H. et al. (2002), ”Design and characteristic analysis of non-contact magnet gear for conveyor by using permanent magnet”, IAS Ann. Meet., Pittsburgh, PA, pp.1922-1927.
[280] Herbstritt W. R., Iron Steel Eng. 76 (7) pp 44– (1999)
[281] Kim, D. M. and Hur, M. K. (1999), ”Shock absorbing design of composite leaf spring landing gear”, Int. SAMPE Symp. Exhib., Vol.44No. 2, pp.1564-1575.
[282] DOI: 10.1109/TMAG.2005.855182 · doi:10.1109/TMAG.2005.855182
[283] Lee, A. S. and Ha, J. W. (2003), ”Maximum unbalance responses of a gear-coupled two-shaft rotor-bearing system”, ASME Turbo Expo., IGTI, ASME, Vol.4, pp.473-480.
[284] DOI: 10.1016/j.jsv.2004.04.037 · doi:10.1016/j.jsv.2004.04.037
[285] DOI: 10.1016/S0022-460X(02)01103-3 · doi:10.1016/S0022-460X(02)01103-3
[286] Li, R. et al. (2001), ”Structure modal analysis of gearbox”, Int. Conf. Mech. Transmiss., Chongqing, pp.360-362.
[287] DOI: 10.1016/j.jmatprotec.2004.01.030 · doi:10.1016/j.jmatprotec.2004.01.030
[288] Lin, B. J. et al. (2005), ”A novel adjustable speed drive system using coaxial motor and planetary gear system”, SICE Ann. Meet., Okayama, pp.2600-2605.
[289] DOI: 10.1016/S0045-7825(99)00161-9 · Zbl 0979.74053 · doi:10.1016/S0045-7825(99)00161-9
[290] DOI: 10.1016/S0045-7825(01)00201-8 · Zbl 0999.70005 · doi:10.1016/S0045-7825(01)00201-8
[291] DOI: 10.1016/S0045-7825(02)00215-3 · Zbl 1131.74325 · doi:10.1016/S0045-7825(02)00215-3
[292] DOI: 10.1016/S0045-7825(02)00235-9 · Zbl 1008.74060 · doi:10.1016/S0045-7825(02)00235-9
[293] DOI: 10.2514/2.2908 · doi:10.2514/2.2908
[294] Mack W. R., Gear Technol. 16 (3) pp 57– (1999)
[295] Maliha R., ASME Design Eng. Tech. Conf., ASME 4 pp 1099– (2003)
[296] DOI: 10.1115/1.1711819 · doi:10.1115/1.1711819
[297] DOI: 10.5589/q02-021 · doi:10.5589/q02-021
[298] Morrison, D. et al. (1997), ”Aircraft landing gear simulation and analysis”, ASEE Ann. Conf., Milwaukee, pp.1-8.
[299] Pedrero, J. I. and Zanzi, C. (2005), ”Stress analysis of a face gear drive with conical pinion”, VDI Berichte,No.1904, pp.107-123.
[300] Pennestri, E. et al. (2004), ”A dynamic simulation of cam actuated robotized gearbox”, ASME Design Eng. Tech. Conf., Salt Lake City, Vol.2, pp.819-830.
[301] DOI: 10.1006/jsvi.1998.1988 · doi:10.1006/jsvi.1998.1988
[302] DOI: 10.1016/S0965-9978(96)00042-7 · Zbl 05470093 · doi:10.1016/S0965-9978(96)00042-7
[303] Rusinski E., Braunkohle/Surface Mining 50 (1) pp 15– (1998)
[304] Sareen A. K., Ann. Forum Proc. - Am. Helicopter Soc., Washington, DC 2 pp 1267– (1998)
[305] Soeiro N. S., 4th World Cong. Comput. Mech., Buenos Aires pp 263– (1998)
[306] Su D., 11th World Cong. Mechanism Machine Sci., Tianjin pp 732– (2004)
[307] DOI: 10.1115/1.1584689 · doi:10.1115/1.1584689
[308] Tronstad, H. and Larsen, C. M. (1997), ”NFEM approaches for calculating fishing gear as a system of flexible lines”, 16th Int. Conf. Offshore Mech. Arctic Eng., ASME, Yokohama, pp.101-108.
[309] DOI: 10.1115/1.1555660 · doi:10.1115/1.1555660
[310] DOI: 10.1177/10775402029594 · doi:10.1177/10775402029594
[311] DOI: 10.1002/cnm.526 · Zbl 1044.70003 · doi:10.1002/cnm.526
[312] Wollweber K. S., VDI Berichte (1630) pp 97– (2001)
[313] DOI: 10.1109/20.582770 · doi:10.1109/20.582770
[314] DOI: 10.1109/20.619721 · doi:10.1109/20.619721
[315] DOI: 10.1016/j.cma.2004.07.022 · Zbl 1137.74411 · doi:10.1016/j.cma.2004.07.022
[316] DOI: 10.1243/095440703766518096 · doi:10.1243/095440703766518096
[317] Zhou, J. and Chen, Z. (2001), ”Computerized design of cycloidal gear drive with improved gear tooth modification”, Int. Conf. Mech. Transmiss., Chongqing, pp.167-170.
[318] Chang, J. R. and Hsu, W. C. (2005), ”Coupling effect of flexible geared rotor on quick return mechanism”, ASME Power Conf., ICOPE, Chicago, IL, pp.41-51.
[319] DOI: 10.1115/IMECE2003-43233 · doi:10.1115/IMECE2003-43233
[320] Tanabe, M. and Gao, Q. (1998), ”Contact-impact analysis of a geared rotor system coupled with rotational and lateral vibrations”, 4th World Cong. Comput. Mech., Buenos Aires, pp.247.
[321] DOI: 10.1016/j.engfailanal.2005.01.003 · doi:10.1016/j.engfailanal.2005.01.003
[322] Hiller M., VDI Berichte (1665) pp 691– (2002)
[323] Sahrmann G. J., 60th Ann. Forum, AHS, Baltimore, MD 2 pp 1229– (2004)
[324] Aziz, E. S. and Chassapis, C. (2003), ”An intelligent design system for agile design and manufacturing of mechanical transmission systems”, ASME Design Eng. Tech. Conf., ASME, Vol.4A, pp.397-408.
[325] DOI: 10.1016/j.finel.2004.04.007 · doi:10.1016/j.finel.2004.04.007
[326] DOI: 10.3901/CJME.2002.01.062 · doi:10.3901/CJME.2002.01.062
[327] DOI: 10.1016/S0890-6955(97)00075-8 · doi:10.1016/S0890-6955(97)00075-8
[328] Denefleh, R. and Christ, M. (2005), ”Development of a modular system for a high dynamic drive system”, VDI Berichte,No.1904, pp.231-245.
[329] Derouiche, A. et al. (2004), ”Prediction of acoustic pressure radiated by gear transmission without housing”, ISMA 2004, Leuven, pp.1097-1105.
[330] Ducret P., Acta Acustica 84 (1) pp 97– (1998)
[331] Goncharenko V. I., Int. Appl. Mech. 33 (2) pp 168– (1997)
[332] Graf, B. and Wender, B. (2004), ”Multi level model updating for the evaluation and the optimisation of the sound radiation calculation of a principle gearbox housing”, Int. Conf. Noise Vib. Eng., ISMA, Leuven, pp.1801-1815.
[333] Guan, Y. et al. (2002), ”Comparison of actuator designs for active vibration control of a gear pair system”, Proc. SPIE, Vol.4693, pp.372-383. · doi:10.1117/12.475234
[334] DOI: 10.1016/S0022-460X(03)00072-5 · doi:10.1016/S0022-460X(03)00072-5
[335] DOI: 10.1088/0964-1726/13/3/001 · doi:10.1088/0964-1726/13/3/001
[336] DOI: 10.3397/1.2828464 · doi:10.3397/1.2828464
[337] DOI: 10.1115/1.2834125 · doi:10.1115/1.2834125
[338] Mezyk, A. and Switonski, E. (2002), ”Optimal design of dynamic characteristics of electromechanical drive systems”, Int. Conf. Noise Vib. Eng., ISMA, Leuven, pp.2349-2357.
[339] Misun, V. and Prikryl, K. (1998), ”Influence of the constructional modifications of gearbox housing onto its vibroacoustic properties”, Int. Conf. Noise Vib. Eng., ISMA, Leuven, pp.845-852.
[340] Ognjanovic, M. and Ciric-Kostic, S. (2005), ”Effects of gear housing modal behavior at the noise emission”, VDI Berichte,No.1904, pp.1767-1772.
[341] Pelinescu, I. and Balachandran, B. (2000), ”Analytical and experimental investigations into active control of wave transmission through gearbox struts”, Proc. SPIE, Vol.3985, pp.76-85. · doi:10.1117/12.388866
[342] Shiau, T. N. et al. (2004), ”Multilevel optimization of the geared rotor-bearing system for multi-objectives with critical speed constraints”, ASME Turbo Expo., ASME, Vienna, Vol.6, pp.755-762.
[343] Soeiro N. S., Int. J. Acoust. Vib. 10 (2) pp 61– (2005)
[344] DOI: 10.1299/kikaic.69.1108 · doi:10.1299/kikaic.69.1108
[345] DOI: 10.1016/j.jsv.2005.04.033 · doi:10.1016/j.jsv.2005.04.033
[346] Zhao, H. et al. (2001), ”Torque characteristic analysis and optimal design of permanent-magnetic gears by using finite element method”, Int. Conf. Mech. Transmiss., Chongqing, pp.318-321.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.