zbMATH — the first resource for mathematics

Mathematical models and methods in the water industry. (English) Zbl 1093.91051
Summary: The study field of water comprises a large variety of activities and interests, and therefore, areas of work. These areas face real engineering problems and, as a consequence, the contributions by some techniques from applied mathematics are really important. On the one hand, it is necessary to have analysis tools that allow us to carry out reliable simulations of the different models by analyzing different configurations, operation modes, load conditions, etc., in order to study existing installations from their basic characteristic data. They are determinist processes whose mathematical expressions consist of coupled systems of different types of equations, algebraic, ordinary differential, and partial differential equations, typically nonlinear, for which specific numerical techniques are necessary. In addition, given the uncertainty of many of the data (especially in existing configurations), it is frequently necessary to solve important inverse problems where other techniques (statistical, minimum quadratic, etc.) are also highly interesting. On the other hand, design is necessary in order to carry out new configurations. Frequently, the absence of initial data and the need of fulfilling different types of restrictions (some of them prone to subjectivity) turn design processes into real optimization problems where the classical methods frequently fail and for which the most current techniques based on neural networks, genetic algorithms, fuzzy theory, chaos theory, etc. are indispensable. This document describes the most important mathematical aspects needed in some of the stages of the integral cycle of water, with special emphasis on the most current topics.

91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
Full Text: DOI
[1] Chorin, A.J.; Marsden, J.E., A mathematical introduction to fluid mechanics, (1990), Springer-Verlag · Zbl 0712.76008
[2] ()
[3] Izquierdo, J.; Iglesias, P.L., Mathematical modelling of hydraulic transients in simple systems, Mathl. comput. modelling, 35, 7/8, 801-812, (2002) · Zbl 1054.76520
[4] Wood, D.J.; Rayes, A.M., Reliability of algorithms for pipe network analysis, J. hydraulics division, ASCE, 107, HY10, 1145-1161, (1981)
[5] Análisis, diseño, operación y mantenimiento de redes hidráulicas a presión, (1997), UPV Valencia, Spain
[6] Rauch, W.; Bertrand-Krajewski, J.; Krebs, P.; Mark, O.; Schilling, W.; Schtze, M.; Vanrolleghem, A., Mathematical modelling of integrated urban drainage systems, (), 89-106
[7] Fox, J.A., Transient flow in pipes, open channels and sewers, (1989), Ellis Horwood Valencia, Spain
[8] Coen, F.; Petersen, B.; Vanrolleghem, P.A.; Vanderhaegen, B.; Henze, M., Model-based characterization of hydraulic, kinetic and influent properties or an industrial WWTP, Sat. sci. tech., 37, 12, 317-326, (1998)
[9] Espert, V.; López, P.A.; Izquierdo, J., Fundamentals of a water quality model solution for dissolved oxygen in one-dimensional receiving system, (), 444-445
[10] Cross, H., Analysis of flow in networks of conduits or conductors, ()
[11] Shamir, U.; Howard, C.D.D., Water distribution systems analysis, J. hydraulics division, ASCE, 94, HY1, 219-234, (1994)
[12] Wood, D.J.; Charles, C.O.A., Hydraulic network analysis using linear theory, (), 1157-1170, HY7
[13] Todini, E.; Pilati, S., A gradient algorithm for the analysis of pipe networks, ()
[14] Salgado, R.; Rojo, J.; Zepeda, S., Extended gradient method for full non-linear head and flow analysis, (), 49-60, Ch. 1
[15] ()
[16] Rossman, L.A., (), Translated by Fluid Mechanics Group, UPV
[17] Cabrera, E.; Izquierdo, J.; Abreu, J.M.; Iglesias, P.L., Discussion of the paper “filling of pipelines with undulating elevation profiles”, (), 1170-1173
[18] Izquierdo, J.; Fuertes, V.S.; Cabrera, E.; Iglesias, P.L.; Garcia-Serra, J., Pipeline start-up with entrapped air, Journal of hydraulic research, 37, 5, 579-590, (1999)
[19] Chaudhry, H.M., Applied hydraulic transients, (1987), Van Nostrand Reinhold
[20] Wylie, E.B.; Streeter, V.L., Fluid transients in systems, (1993), Prentice-Hall New York
[21] Wood, D.J.; Dorsch, R.G.; Lightener, C., Wave plan analysis of unsteady flow in closed conduits, (), 83-110, HT2
[22] Wood, D.J.; Funk, J.E., (), User’s Manual
[23] Chaudhry, H.M., Numerical solution of transient-flow equations, (), 663-690
[24] Baker, A.J., Finite element computational fluid mechanics, (1983), McGraw-Hill Lexington, KY · Zbl 0515.76001
[25] Watt, C.S., Application of finite element method to unsteady flow problems, ()
[26] Shih, Y.T.; Elman, H.C., Modified streamline diffusion schemes for convection-diffusion problems, Comput. methods appl. mech. eng., 174, 137-151, (1999) · Zbl 0957.76035
[27] Cockburn, B.; Shu, C.W., The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: multidimensional systems, J. comput. phys., 141, 199-224, (1998) · Zbl 0920.65059
[28] Cockburn, B., Finite element methods for conservation laws, J. comput. appl. math., 128, 187-204, (2001) · Zbl 0974.65092
[29] Dettmer, W.; Peric, C., An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation, Comput. methods appl. mech. eng., 192, 1177-1226, (2002) · Zbl 1091.76521
[30] Liggett, J.A., The boundary element method—some fluid applications, (), 1-8
[31] Gottlieb, D.; Orszag, S.A., Theory of spectral methods for mixed initial-boundary value problems, parts I and II, (1977), ICASE, NASA Langley Research Center
[32] Gottlieb, D.; Hussaini, M.Y.; Orszag, S.A., Theory and applications of spectral methods, ()
[33] Izquierdo, J.; Iglesias, P.L.; Cabrera, E., DYAGATS—simulación mediante ordenador personal de transitorios en sistemas simples, (), Coimbra, Portugal
[34] Iglesias, P.L., Modelo general de análisis de redes hidráulicas a presión en régimen transitorio, Tesis doctoral, (Septiembre 2001)
[35] Izquierdo, J.; Iglesias, P.L., Mathematical modelling of hydraulic transients in complex systems, Mathl. comput. modelling, 39, 4/5, 529-540, (2004) · Zbl 1112.76325
[36] Celia, M.A.; Russell, T.F.; Herrera, I.; Ewing, R.E., An eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. water resour., 13, 187-206, (1990)
[37] Herrera, I.; Ewing, R.E.; Celia, M.A.; Russell, T.F., Eulerian-Lagrange localized adjoint methods: the theoretical framework, Numer. methods pdes, 9, 431-458, (1993) · Zbl 0784.65071
[38] Wang, H.; Ewing, R.E.; Qin, G.; Lyons, S.L.; Man, S., A family of eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations, J. comput. phys., 152, 120-163, (1999) · Zbl 0956.76050
[39] Wiggert, D.C.; Sundquist, M.J., Fixed-grid characteristics for pipeline transients, J. hydr. engrg., ASCE, 103, 13, 1403-1415, (1977)
[40] Goldberg, D.E.; Wylie, E.B., Characteristics method using time-line interpolation, J. hydr. engrg., ASCE, 109, 5, 670-683, (1983)
[41] Lai, C., Comprehensive method of characteristics for flow simulation, J. hydr. engrg., ASCE, 114, 9, 1074-1095, (1989)
[42] Holly, M.; Preissmann, A., Accurate calculation of transport in two dimensions, J. hydr. engrg., ASCE, 103, 11, 1259-1277, (1977)
[43] Sibetheros, I.A.; Holley, E.R.; Branski, J.M., Spline interpolation for waterhammer analysis, J. hydr. engrg., ASCE, 117, 10, 1332-1349, (1991)
[44] Karney, B.W.; Ghidaoui, M.S., Flexible discretization algorithm for fixed-grid MOC in pipelines, J. hydr. engrg., ASCE, 123, 11, 1004-1011, (1997)
[45] Ghidaoui, M.S.; Karney, B.W., Equivalent differential equations in fixed-grid characteristics method, J. hydr. engrg., ASCE, 120, 10, 1159-1175, (1994)
[46] Wang, X.J.; Lambert, M.F.; Simpson, A.R.; Ligget, J.A.; Vitkovsky, J.P., Leak detection in pipelines using the damping of fluid transients, Journal of hydraulic engineering, 128, 7, 697-711, (2002)
[47] Brunone, B.; Ferrante, M., Detecting leaks in pressurized pipes by means of transients, Journal of hydraulic research, 39, 4, 1-9, (2002)
[48] Mpesha, W.; Chaudhry, M.H.; Gassman, S.L., Leak detection in pipes by frequency response method using a step excitation, Journal of hydraulic research, 40, 1, 55-62, (2002)
[49] Kusaka, Y.; Tani, A., Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow, Math. mod. and meth. in appl. sci., 12, 365-391, (2002) · Zbl 1040.35151
[50] Evje, S.; Fjelde, K.K., Relaxation schemes for the calculation of two-phase flow in pipes, Mathl. comput. modelling, 36, 4/5, 535-567, (2002) · Zbl 1129.76345
[51] Speranza, A., Suspension flows in a pipeline with partial phase separation, Mathl. comput. modelling, 33, 4/5, 445-467, (2001) · Zbl 1050.76054
[52] Mellado, M.; Rodríguez, R., Efficient solution of fluid-structure vibration problems, Appl. numer. analysis, 36, 389-400, (2001) · Zbl 1033.74046
[53] van Brummelen, E.H.; Hulshoff, S.J.; de Borst, R., Energy conservation under incompatibility for fluid-structure interaction, Comput. models in appl. mech. eng., 192, 2727-2748, (2003) · Zbl 1054.74567
[54] Bathe, K.J.; Pontaza, J.P., A flow-condition-based interpolation mixed finite element procedure for higher Reynolds number fluid flows, Math. mod. and meth. in appl. sci., 12, 525-539, (2002) · Zbl 1215.76059
[55] Vellando, P.; Puertas, J.; Colominas, I., SUPG stabilized finite element resolution of the Navier-Stokes equations, (), 5899-5922 · Zbl 1012.76054
[56] Ranjithan, S.; Eheart, J.W.; Garrett, J.H., Application of neural network in groundwater remediation under conditions of uncertainty, (), 133-140
[57] Izquierdo, J., Desarrollo de una herramienta para la optimización de la gestión de recursos hídricos en sistemas de distribución de agua basada en las redes neuronales, (), Unpublished results
[58] Pérez, R.; Andreu, M.; Izquierdo, J., Diseño de redes de distribución de agua, (), 653-727
[59] Alperovits, E.; Shamir, U., Design of optimal water distribution systems, Water resources res., 1, 6, 885-900, (1977)
[60] Simpson, A.R.; Dandy, G.C.; Murphy, L.J., Genetic algorithms compared to other techniques for pipe optimization, J. water resour. plng. and mgmt., ASCE, 120, 4, 423-443, (1994)
[61] Savic, D.; Walters, G., Genetic algorithms for least-cost design of water distribution systems, J. water resour. plng. and mgmt., ASCE, 123, 2, 67-77, (1997)
[62] Xu, Ch.; Goulter, I.C., Reliability-based optimal design of water distribution systems, J. water resour. plng. and mgmt., ASCE, 125, 6, 352-362, (1999)
[63] Goulter, I., Analytical and simulation models for reliability analysis in water distribution systems, (), 235-266
[64] Goulter, I.; Coals, A., Quantitative approaches to reliability in pipe networks, J. transp. engrg., ASCE, 112, 3, 287-301, (1986)
[65] Goulter, I.; Bouchart, F., Reliability-constrained pipe network model, J. hydr. engrg., ASCE, 116, 2, 211-229, (1990)
[66] Mays, L.W., Methodologies for assessment of aging water distribution systems, () · Zbl 0709.76110
[67] Guercio, R.; Xu, Z., Linearized optimization model for reliability-based design of water systems, J. hydr. engrg., ASCE, 123, 11, 1020-1026, (1997)
[68] Ostfeld, A.; Shamir, U., Design of optimal reliable multiquality water-supply systems, J. of plng. resour. and mgmgt., ASCE, 122, 5, 322-333, (1996)
[69] Ben-Tal, A.; Eiger, G.; Outrata, J.; Zowe, J., A nondifferentiable approach to decomposable optimization problems with an application to the design of water distribution networks, (), 197-216, No. 382 · Zbl 0790.90064
[70] Yen, B.C.; Cheng, S.T.; Melching, C.S., First-order reliability analysis, (), 1-36
[71] Xu, C.; Goulter, I.C., Uncertainty analysis of water distribution networks, (), 609-616
[72] Tung, Y.K., Uncertainty analysis in water resources engineering, (), 29-46
[73] Kaufmann, A.; Gupta, M.M., Introduction to fuzzy arithmetics: theory and applications, (1991), Van Nostrand Reinhold Rotterdam, The Netherlands · Zbl 0754.26012
[74] Bardossy, A.; Duckstein, L., Fuzzy rule-based modeling with application to geophysical, economic, biological and engineering systems, (1995), CRC New York · Zbl 0857.92001
[75] Hansen, E., Global optimization using interval analysis, (1992), Dekker London · Zbl 0762.90069
[76] Neumaier, A., Interval methods for system of equations, (1990), Cambridge University Press New York · Zbl 0706.15009
[77] Revelli, R.; Ridolfi, L., Fuzzy approach for analysis of pipe networks, J. hydr. engrg., ASCE, 128, 1, 93-101, (2002) · Zbl 1156.76456
[78] Yates, D.F.; Templeman, A.B.; Boffey, T.B., The computational complexity of the problem of determining least capital cost designs for water supply systems, Engrg. optimization, 7, 2, 142-155, (1984)
[79] Michalewicz, Z., Genetic algorithms + data structures = evolutionary programs, (1992), Springer-Verlag Cambridge, U.K. · Zbl 0763.68054
[80] Walters, G.A.; Lohbeck, G., Optimal layout of tree networks using genetic algorithms, Engrg. optimization, 22, 1, 27-48, (1993)
[81] Murphy, L.J.; Simpson, A.R., Genetic algorithms in pipe network optimization, ()
[82] Walters, G.A.; Cembrowicz, R.G., Optimal design of water distribution networks, (), 91-117
[83] Savic, D.A.; Walters, G.A., Genetic algorithms for least-cost design of water distribution networks, J. of water plng. and mgmt., 123, 2, 67-77, (1997)
[84] Wu, Z.Y.; Simpson, A.R., A self-adaptative boundary search genetic algorithm and its application to water distribution systems, J. hydr. research, 40, 2, 191-199, (2002)
[85] Savic, D.A.; Walters, G.A., Genetic algorithms and evolution programs for decision support, (), 70-80
[86] Martínez, F.; Pérez, R.; Izquierdo, J., Optimum design and reliability in water distribution systems, ()
[87] Neelakantan, T.R.; Pundarikanthan, N.V., Neural network-based simulation-optimization model for reservoir operation, J. water resour. plng. and mgmt., ASCE, 2, 57-62, (2000)
[88] Johnson, V.M.; Leah, L.R., Accuracy of neural network approximators in simulation-optimization, J. water resour. plng. and mgmt., ASCE, 2, 48-56, (2000)
[89] Hush, D.R.; Horne, B.G., Progress in supervised neural networks, (), 8-39
[90] Izquierdo, J.; Escribano, A.; Iglesias, P.L.; Díaz, J.L., Predimensionado de calderines antiariete mediante una red neuronal, ()
[91] Likas, A.; Blekas, K.; Safylopatis, A., Application of the fuzzy MIN-MAX neural network classifier to problems with continuous and discrete attributes, (), 163-170
[92] Blekas, K.; Likas, A.; Safylopatis, A., A fuzzy neural network approach to classification based on proximity characteristics patterns, ()
[93] Abbott, M.B.; Babovic, V.M.; Cunge, J.A., Towards the hydraulics of the hydroinformatics era, J. hydr. research, 39, 4, 339-349, (2001)
[94] Dibike, Y.B., Developing generic hydrodynamic models using artificial neural networks, J. hydr. research, 40, 2, 183-190, (2002)
[95] Cumberbatch, E.; Fitt, A., Mathematical modeling, case studies from industry, (2001), Cambridge University Press Spain · Zbl 0980.00003
[96] Fulford, G.R.; Broadbridge, P., Industrial mathematics, case studies in the diffusion of heat and matter, (2002), Cambridge University Press · Zbl 0982.00007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.