×

zbMATH — the first resource for mathematics

Automatic three-dimensional acoustic-structure interaction analysis using the scaled boundary finite element method. (English) Zbl 1452.65350
Summary: An automatic approach for 3D analysis of acoustic-structure interaction problems is proposed based on the scaled boundary finite element method (SBFEM). The acoustic domain studied in this paper is assumed to be infinite. The infinite acoustic domain is divided into a near field (bounded domain) and a far field (unbounded domain). The acoustic near field contains structures of arbitrary shape, while the far field represents the unbounded acoustic domain. For modeling the wave propagation accurately and efficiently, continued fractions are employed to evaluate the dynamic stiffness and impedance of subdomains in both structural and acoustic domains. The time-domain equations for both structural and acoustic domains can be obtained by introducing auxiliary variables. Via satisfying the boundary conditions on the acoustic-structure interface, the global system of equations for acoustic-structure interaction system can be constructed. Symmetric formulations can also be obtained for this coupled system. Since the SBFEM requires the discretization of only the boundary, the mesh transition on the acoustic-structure interface is easily addressed by the subdivisions of 2D surface elements. Automatic meshing techniques can be incorporated in the proposed approach to generate meshes directly from the input geometrical models. Numerical examples are presented to demonstrate the accuracy, efficiency and potential of the proposed approach for modeling complex 3D acoustic-structure interaction problems.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Z05 Applications to the sciences
74B05 Classical linear elasticity
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amini, S.; Harris, P. J.; Wilton, D. T., Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem, vol. 77 (1992), Springer Science & Business Media
[2] Astley, R. J., Infinite elements for wave problems: a review of current formulations and an assessment of accuracy, Int. J. Numer. Methods Eng., 49, 951-976 (2000) · Zbl 1030.76028
[3] Astley, R. J.; Hamilton, J. A., The stability of infinite element schemes for transient wave problems, Comput. Methods Appl. Mech. Eng., 195, 29-32, 3553-3571 (2006) · Zbl 1122.76051
[4] Baffet, D.; Bielak, J.; Givoli, D.; Hagstrom, T.; Rabinovich, D., Long-time stable high-order absorbing boundary conditions for elastodynamics, Comput. Methods Appl. Mech. Eng., 241, 20-37 (2012) · Zbl 1353.74012
[5] Bartoli, I.; di Scalea, F. L.; Fateh, M.; Viola, E., Modeling guided wave propagation with application to the long-range defect detection in railroad tracks, NDT & E Int., 38, 5, 325-334 (2005)
[6] Bathe, K. J.; Nitikitpaiboon, C.; Wang, X., A mixed displacement-based finite element formulation for acoustic fluid-structure interaction, Comput. Struct., 56, 2-3, 225-237 (1995) · Zbl 1002.76536
[7] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Commun. Pure Appl. Math., 33, 707-725 (1980) · Zbl 0438.35043
[8] Belytschko, T., Fluid-structure interaction, Comput. Struct., 12, 4, 459-469 (1980) · Zbl 0457.73076
[9] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200 (1994) · Zbl 0814.65129
[10] Bermúdez, A.; Rodríguez, R., Finite element computation of the vibration modes of a fluid-solid system, Comput. Methods Appl. Mech. Eng., 119, 3-4, 355-370 (1994) · Zbl 0851.73053
[11] Bermúdez, A.; Hervella-Nieto, L.; Rodríguez, R., Finite element computation of three-dimensional elastoacoustic vibrations, J. Sound Vib., 219, 2, 279-306 (1999) · Zbl 1235.74267
[12] Birk, C.; Liu, L.; Song, C., Coupled acoustic response of two-dimensional bounded and unbounded domains using doubly-asymptotic open boundaries, J. Comput. Phys., 310, 252-284 (2016) · Zbl 1349.76181
[13] Brunner, D.; Junge, M.; Gaul, L., A comparison of FE-BE coupling schemes for large-scale problems with fluid – structure interaction, Int. J. Numer. Methods Eng., 77, 5, 664-688 (2009) · Zbl 1156.74374
[14] Chen, D.; Birk, C.; Song, C.; Du, C., A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method, Int. J. Numer. Methods Eng., 97, 13, 937-959 (2014) · Zbl 1352.65335
[15] Chen, H. C.; Taylor, R. L., Vibration analysis of fluid-solid systems using a finite element displacement formulation, Int. J. Numer. Methods Eng., 29, 4, 683-698 (1990) · Zbl 0724.73173
[16] Chopra, A. K., Earthquake Response of Concrete Gravity Dams (1970), University of California, Berkeley Earthquake Engineering Research Center, Technical report
[17] Diaz, J.; Joly, P., A time domain analysis of PML models in acoustics, Comput. Methods Appl. Mech. Eng., 195, 29-32, 3820-3853 (2006) · Zbl 1119.76046
[18] Dreyer, D.; Petersen, S.; von Estorff, O., Effectiveness and robustness of improved infinite elements for exterior acoustics, Comput. Methods Appl. Mech. Eng., 195, 29-32, 3591-3607 (2006) · Zbl 1123.76030
[19] Engquist, B.; Majda, A., Radiation boundary conditions for acoustic and elastic wave calculations, Commun. Pure Appl. Math., 32, 3, 313-357 (1979) · Zbl 0387.76070
[20] Everstine, G. C., A symmetric potential formulation for fluid-structure interaction, J. Sound Vib., 79, 1, 157-160 (1981)
[21] Fan, S.; Li, S., Boundary finite-element method coupling finite-element method for steady-state analyses of dam-reservoir systems, J. Eng. Mech., 134, 2, 133-142 (2008)
[22] Fan, S.; Li, S.; Yu, G., Dynamic fluid-structure interaction analysis using boundary finite element method – finite element method, J. Appl. Mech., 72, 4, 591-598 (2005) · Zbl 1111.74400
[23] Gao, M.; Cao, Y.; Zeng, X.; Hu, J., Microstructure characteristics and acoustic properties of laser repaired Chinese bronze bells 2300 years ago, J. Alloys Compd., 509, 3, 953-956 (2011)
[24] Givoli, D., Non-reflecting boundary conditions, J. Comput. Phys., 94, 1, 1-29 (1991) · Zbl 0731.65109
[25] Givoli, D., High-order local non-reflecting boundary conditions: a review, Wave Motion, 39, 4, 319-326 (2004) · Zbl 1163.74356
[26] Gravenkamp, H.; Prager, J.; Saputra, A. A.; Song, C., The simulation of lamb waves in a cracked plate using the scaled boundary finite element method, J. Acoust. Soc. Am., 132, 3, 1358-1367 (2012)
[27] Gravenkamp, H.; Birk, C.; Song, C., Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method, J. Comput. Phys., 295, 438-455 (2015) · Zbl 1349.74352
[28] Gravenkamp, H.; Birk, C.; Van, J., Modeling ultrasonic waves in elastic waveguides of arbitrary cross-section embedded in infinite solid medium, Comput. Struct., 149, 61-71 (2015)
[29] Hamdi, M. A.; Ousset, Y.; Verchery, G., A displacement method for the analysis of vibrations of coupled fluid-structure systems, Int. J. Numer. Methods Eng., 13, 1, 139-150 (1978) · Zbl 0384.76060
[30] Harari, I.; Albocher, U., Studies of FE/PML for exterior problems of time-harmonic elastic waves, Comput. Methods Appl. Mech. Eng., 195, 29-32, 3854-3879 (2006) · Zbl 1119.74048
[31] Higdon, R. L., Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. Comput., 47, 176, 437-459 (1986) · Zbl 0609.35052
[32] Howe, M. S., Acoustics of Fluid-Structure Interactions (1998), Cambridge University Press · Zbl 0921.76002
[33] Jiang, X.; Zheng, W., Adaptive perfectly matched layer method for multiple scattering problems, Comput. Methods Appl. Mech. Eng., 201, 42-52 (2012) · Zbl 1239.74039
[34] Lehmann, L.; Langer, S.; Clasen, D., Scaled boundary finite element method for acoustics, J. Comput. Acoust., 14, 4, 489-506 (2006) · Zbl 1198.76080
[35] Li, J.; Shi, Z.; Liu, L., A unified scaled boundary finite element method for transient two-dimensional vibro-acoustic analysis of plate-like structures, Comput. Struct., 202, 105-128 (2018)
[36] Li, S., Scaled Boundary Finite Element Method for Fluid-Structure Interaction (2006), Nanyang Technological University, PhD thesis
[37] Liu, L.; Zhang, J.; Song, C.; Birk, C.; Gao, W., An automatic approach for the acoustic analysis of three-dimensional bounded and unbounded domains by scaled boundary finite element method, Int. J. Mech. Sci., 151, 563-581 (2019)
[38] Liu, Y.; Saputra, A. A.; Wang, J.; Tin-Loi, F.; Song, C., Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL models, Comput. Methods Appl. Mech. Eng., 313, 106-132 (2017)
[39] Marburg, S.; Nolte, B., Computational Acoustics of Noise Propagation in Fluids: Finite and Boundary Element Methods, vol. 578 (2008), Springer
[40] Mellado, M.; Rodríguez, R., Efficient solution of fluid-structure vibration problems, Appl. Numer. Math., 36, 4, 389-400 (2001) · Zbl 1033.74046
[41] Moser, F.; Jacobs, L. J.; Qu, J., Modeling elastic wave propagation in waveguides with the finite element method, NDT & E Int., 32, 4, 225-234 (1999)
[42] Nitikitpaiboon, C.; Bathe, K. J., An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction, Comput. Struct., 47, 4-5, 871-891 (1993) · Zbl 0800.73296
[43] Olson, L. G.; Bathe, K. J., Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential, Comput. Struct., 21, 1-2, 21-32 (1985) · Zbl 0568.73088
[44] Peters, H.; Kessissoglou, N.; Marburg, S., Modal decomposition of exterior acoustic-structure interaction, J. Acoust. Soc. Am., 133, 5, 2668-2677 (2013)
[45] Peters, H.; Kessissoglou, N.; Marburg, S., Modal decomposition of exterior acoustic-structure interaction problems with model order reduction, J. Acoust. Soc. Am., 135, 5, 2706-2717 (2014)
[46] Prempramote, S., Development of Higher-Order Doubly Asymptotic Open Boundaries for Wave Propagation in Unbounded Domains by Extending the Scaled Boundary Finite Element Method (2011), School of Civil and Environmental Engineering, The University of New South Wales: School of Civil and Environmental Engineering, The University of New South Wales Sydney, Australia, PhD thesis
[47] Prempramote, S.; Song, C.; Tin-Loi, F.; Lin, G., High-order doubly asymptotic open boundaries for scalar wave equation, Int. J. Numer. Methods Eng., 79, 3, 340-374 (2009) · Zbl 1171.74360
[48] Rokhlin, V., Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 2, 187-207 (1985) · Zbl 0629.65122
[49] Saputra, A. A.; Talebi, H.; Tran, D.; Birk, C.; Song, C., Automatic image-based stress analysis by the scaled boundary finite element method, Int. J. Numer. Methods Eng., 109, 5, 697-738 (2017)
[50] ScanTheWorld, Bronze Bell (bo) at the British Museum, London, Jan 2016
[51] Soares, D.; Godinho, L., An optimized BEM-FEM iterative coupling algorithm for acoustic – elastodynamic interaction analyses in the frequency domain, Comput. Struct., 106, 68-80 (2012)
[52] Song, C., The scaled boundary finite element method in structural dynamics, Int. J. Numer. Methods Eng., 77, 8, 1139-1171 (2009) · Zbl 1156.74387
[53] Song, C., The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation (2018), John Wiley & Sons
[54] Song, C.; Wolf, J. P., Consistent infinitesimal finite-element-cell method: out-of-plane motion, J. Eng. Mech., 121, 5, 613-619 (1995)
[55] Song, C.; Wolf, J. P., Consistent infinitesimal finite-element-cell method: three-dimensional vector wave equation, Int. J. Numer. Methods Eng., 39, 13, 2189-2208 (1996) · Zbl 0885.73089
[56] Song, C.; Wolf, J. P., The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics, Comput. Methods Appl. Mech. Eng., 147, 3-4, 329-355 (1997) · Zbl 0897.73069
[57] Song, C.; Wolf, J. P., Body loads in scaled boundary finite-element method, Comput. Methods Appl. Mech. Eng., 180, 1, 117-135 (1999) · Zbl 0947.74071
[58] Song, C.; Wolf, J. P., The scaled boundary finite element method—alias consistent infinitesimal finite element cell method—for diffusion, Int. J. Numer. Methods Eng., 45, 10, 1403-1431 (1999) · Zbl 1062.74627
[59] Song, C.; Wolf, J. P., The scaled boundary finite-element method—a primer: solution procedures, Comput. Struct., 78, 1, 211-225 (2000)
[60] van Ophem, S.; Atak, O.; Deckers, E.; Desmet, W., Stable model order reduction for time-domain exterior vibro-acoustic finite element simulations, Comput. Methods Appl. Mech. Eng., 325, 240-264 (2017)
[61] Venås, J. V.; Kvamsdal, T.; Jenserud, T., Isogeometric analysis of acoustic scattering using infinite elements, Comput. Methods Appl. Mech. Eng., 335, 152-193 (2018)
[62] Villamizar, V.; Acosta, S.; Dastrup, B., High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions, J. Comput. Phys., 333, 331-351 (2017) · Zbl 1375.35290
[63] Vu, T. H.; Deeks, A. J., Use of higher-order shape functions in the scaled boundary finite element method, Int. J. Numer. Methods Eng., 65, 10, 1714-1733 (2006) · Zbl 1115.74053
[64] Wang, X.; Jin, F.; Prempramote, S.; Song, C., Time-domain analysis of gravity dam – reservoir interaction using high-order doubly asymptotic open boundary, Comput. Struct., 89, 7, 668-680 (2011)
[65] Westergaard, H. M., Water pressures on dams during earthquakes, Trans. ASCE, 98, 418-432 (1933)
[66] Wolf, J. P., The Scaled Boundary Finite Element Method (2003), John Wiley & Sons
[67] Wolf, J. P.; Song, C., Consistent infinitesimal finite-element-cell method: in-plane motion, Comput. Methods Appl. Mech. Eng., 123, 1-4, 355-370 (1995)
[68] Wolf, J. P.; Song, C., The scaled boundary finite-element method—a primer: derivations, Comput. Struct., 78, 1, 191-210 (2000)
[69] Wu, C.; Huang, C.; Liu, Y., Sound analysis and synthesis of Marquis Yi of Zeng’s chime-bell set, (Proceedings of Meetings on Acoustics ICA2013, vol. 19 (2013), ASA), 035077
[70] Yu, G. Y.; Lie, S. T.; Fan, S. C., Stable boundary element method/finite element method procedure for dynamic fluid – structure interactions, J. Eng. Mech., 128, 9, 909-915 (2002)
[71] Zhao, M.; Wu, L.; Du, X.; Zhong, Z.; Xu, C.; Li, L., Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media, Comput. Methods Appl. Mech. Eng., 334, 111-137 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.