×

zbMATH — the first resource for mathematics

Study of on-line measurement of traffic self-similarity. (English) Zbl 1339.90216
Summary: The research focuses on the analysis of university e-learning network traffic to work out and validate the methods that are most suitable for robust analysis and on-line monitoring of self-similarity. Time series of network traffic analyzed are formed by registering data packets in a node at different regimes of network traffic and different ways of sampling. The results obtained have been processed by Fractan, Selfis programmes and the modules library SSE (Self-similarity Estimator) developed in the paper, which employs the robust analysis methods. The methods implemented in the SSE (Self-similar Estimator) have been tested by computer simulation applying the A. Janicki and A. Weron [Simulation and chaotic behavior of \(\alpha\)-stable stochastic processes. New York, NY: Marcel Dekker (1996; Zbl 0946.60028)] algorithm for generating random standard stable values. The research results show that the regression method implemented by the software modules library SSE is most applicable to the network traffic analysis. The investigation of traffic in the Siauliai University e-learning network has been shown that the network traffic is self-similar with the Hurst coefficient that changes in the interval [0.53, 0.70], the correspondent stability index changes in the interval \([1.43, 1.89]\), the skewness not observed because the estimated \(\beta=0\).

MSC:
90B90 Case-oriented studies in operations research
90B20 Traffic problems in operations research
68T05 Learning and adaptive systems in artificial intelligence
Software:
Fractan; longmemo; Selfis; SSE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abry P, Veitch D (1998) Wavelet analysis of long-range-dependent traffic. IEEE Trans Inf Theory 44(1): 2–15 · Zbl 0905.94006 · doi:10.1109/18.650984
[2] Belov I, Kabasinskas A, Sakalauskas L (2006) A study of stable models of stock markets. Inf Technol Control 35(1): 34–56
[3] Beran J (1998) Statistics for long-memory processes. Chapman and Hall/CRC, USA · Zbl 0869.60045
[4] Erramilli A, Narayan O, Willinger W (1996) Experimental queuing analysis with long-range dependent packet traffic. Available at http://www-net.cs.umass.edu/cs691s/narayan96.ps
[5] Fama EF, Roll R (1971) Parameter estimates for symmetric stable distributions. J Am Stat Assoc 66(334): 331–338 · Zbl 0217.51404 · doi:10.1080/01621459.1971.10482264
[6] Fractan 4.4 (2003) created by Sychev V. Available at http://www.chaostradinggroup.com/download/?module=filesdb3&id=1&fid=3
[7] Gallos LK, Song C, Makse HA (2007) A review of fractality and self-similarity in complex networks. Phys A: Stat Mech Appl 386: 686–691 · doi:10.1016/j.physa.2007.07.069
[8] Guan L, Awan IU, Woodward ME, Wang X (2007) Discrete-time performance analysis of a congestion control mechanism based on RED under multi-class bursty and correlated traffic. J Syst Softw 80(10): 1716–1725 · Zbl 05434195 · doi:10.1016/j.jss.2006.12.549
[9] He G, Gao Y, Hou JC, Park K (2004) A case for exploiting self-similarity of network traffic in TCP congestion control. Comput Netw: Int J Comput Telecommun Netw 45(6): 743–766 · Zbl 1068.68016
[10] Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civil Eng 116: 770–799
[11] Janicki A, Weron A (2000) Simulation and chaotic behavior of a-stable stochastic processes. Marcel Dekker, New York · Zbl 0946.60028
[12] Kabasinskas A, Rachev S, Sakalauskas L, Sun W, Belovas I (2009) Alpha-stable paradigm in financial markets. J Comput Anal Appl 11(4): 641–668 · Zbl 1165.91454
[13] Kaj I (2002) Stochastic modeling in broadband communications systems. SIAM, Philadelphia · Zbl 1020.94001
[14] Karagiannis T, Faloutsos M, Molle M. (2003) A user-friendly self-similarity analysis tool. ACM SIGCOMM Comput Commun Rev 33(3): 81–93 · Zbl 05395301 · doi:10.1145/956993.957004
[15] Kim JS, Goh K, Salvi IG, Oh E, Kahng B, Kim D (2007) Fractality in complex networks: critical and supercritical skeletons. Phys Rev E 75: 016110 · doi:10.1103/PhysRevE.75.016110
[16] Kleinrock L (2002) Creating a mathematical theory of computer networks. Oper Res 50(1): 125–131 · Zbl 1163.68313 · doi:10.1287/opre.50.1.125.17772
[17] Kokoszka PS, Taqqu MS (1996) Parameter estimation for infinite variance fractional ARIMA. Ann Stat 24(5): 1880–1913 · Zbl 0896.62092 · doi:10.1214/aos/1069362302
[18] Koutrouvelis IA (1981) An iterative procedure for the estimation of the parameters of the stable law. Commun Stat: Simul Comput B10: 17–28 · Zbl 0474.62028 · doi:10.1080/03610918108812189
[19] Leland E, Taqqu S, Willinger W, Wilson DW (1994) On the self-similar nature of ethernet traffic. IEEE/ACM Trans Netw 2(1): 1–15 · Zbl 01936506 · doi:10.1109/90.282603
[20] Li M, Lim SC (2008) Modeling network traffic using generalized Cauchy process. Phys A: Stat Mech Appl 387(11): 2584–2594 · doi:10.1016/j.physa.2008.01.026
[21] McCulloch JH (1986) Simple consistent estimators of stable distribution parameters. Commun Stat: Simul Comput 15(4): 1109–1136 · Zbl 0612.62028 · doi:10.1080/03610918608812563
[22] Park K, Willinger W (2000) Self-similar network traffic and performance evaluation. Wiley, USA
[23] Petrov VV (2003) To cto vy hotely znat o samopodobnom teletrafike, no stesnialis sprosit. Available at http://teletraffic.ru/public/pdf/Petroff_It%20is%20that%20you%20wanted_2003.pdf
[24] Press SJ (1972) Estimation in univariate and multivariate stable distribution. J Am Stat Assoc 67: 842–846 · Zbl 0259.62031 · doi:10.1080/01621459.1972.10481302
[25] Rachev ST, Mittnik S (2000) Stable Paretian models in finance. Wiley, Chichester · Zbl 0972.91060
[26] Ruelle D, Takens F (1971) On the nature of turbulence. Commun Math Phys 20: 167–192 · Zbl 0223.76041 · doi:10.1007/BF01646553
[27] Samorodnitsky G, Taqqu MS (1994) Stable non-Gaussian processes stochastic models with infinite variance. Chapman and Hall, New York · Zbl 0925.60027
[28] Samorodnitsky G (2006a) Long memory and self-similar processes. Annales de la faculté des sciences de Toulouse Sér. 6 15(1): 107–123 · Zbl 1255.60060 · doi:10.5802/afst.1115
[29] Samorodnitsky G (2006b) Long range dependence. Found Trends Stoch Syst 1(3): 163–257 · Zbl 1242.60033 · doi:10.1561/0900000004
[30] Selfis 0.1b (2002) created by Karagiannis T. Available at http://www.cs.ucr.edu/\(\sim\)tkarag/Selfis/Selfis.html
[31] Sornette D (2004) Critical phenomena. In: Chaos F (eds) Natural sciences: self-organization and disorder: concepts and tools, (second ed). Springer, Berlin · Zbl 1092.82002
[32] SSE (2008) created by Kaklauskas L. Available at http://lk.su.lt/index.php?option=com_content&view=article&id=47&Itemid=29 · Zbl 1165.65339
[33] Taqqu MS, Teverovsky V (1998) Estimating long-range dependence in finite and infinite variance series. In: Adler R, Feldman R, Taqqu MS (eds) A practical guide to heavy tails: statistical techniques for analyzing heavy-tailed distributions. Birkhauser, Boston, pp 177–217 · Zbl 0922.62091
[34] Userspace logging daemon. (2009) Available at http://www.netfilter.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.