zbMATH — the first resource for mathematics

On a lower asymptotic bound of the overflow probability in a fluid queue with a heterogeneous fractional input. (English) Zbl 07084326
Summary: For a fluid queue fed by superposition of fractional Brownian motion and alpha-stable Lévy process, the asymptotic lower bound of the overflow probability is obtained.
60 Probability theory and stochastic processes
68 Computer science
Full Text: DOI
[1] Breiman, L., On some limit theorems similar to the arc-sin law, Theor. Probab. Appl., 10, 323-331, (1965) · Zbl 0147.37004
[2] Cline, DBH; Samorodnitsky, G., Subexponentiality of the product of independent random variables, Stoch. Proc. Appl., 49, 75-98, (1994) · Zbl 0799.60015
[3] P. Embrechts and M. Maejima, Selfsimilar Processes, Prinston University Press (2002).
[4] I. Kaj, Stochastic Modeling in Broadband Communications Systems, SIAM, Philadelphia (2002). · Zbl 1020.94001
[5] Leland, W.; Taqqu, M.; Willinger, W.; Wilson, D., On the selfsimilar nature of Ethernet traffic (extended version), IEEE/ACM Trans. Netw., 2, 1-15, (1994)
[6] M. Mandjes, Large Deviations of Gaussian Queues, Wiley, Chichester (2007). · Zbl 1125.60103
[7] Mikosch, T.; Resnick, S.; Rootzen, H.; Stegeman, A., Is network traffic approximated by stable Lévy motion or fractional Brownian motion?, Ann. Appl. Probab., 12, 23-68, (2002) · Zbl 1021.60076
[8] Norros, I., A storage model with self-similar input, Queuing Syst., 16, 387-396, (1994) · Zbl 0811.68059
[9] Reich, E., On the integrodifferential equation of Takacs I, Ann. Math. Stat., 29, 563-570, (1958) · Zbl 0086.33703
[10] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall (1994). · Zbl 0925.60027
[11] S. Sarvotham, R. Riedi, and R. Baraniuk, Connection-level analysis and modeling of network traffic, Tech. Rep., ECE Dept., Rice Univ. (2001).
[12] S. Sarvotham, R. Riedi, and R. Baraniuk, “Connection-level analysis and modeling of network traffic,” in: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, ACM, New York (2001), pp. 99-103.
[13] I. V. Shmelev, “Vliyanie fraktal’nykh protsessov na setevoi teletrafik v sovremennykh raspredelennykh informatsionnykh setyakh,” in: Reinzhiniring Biznes-protsessov na Osnove Informatsionnykh Tekhnologii, Mosk. Gosud. Universitet ekonomiki, statistiki i informatiki, Moscow (2004), pp. 11-12.
[14] I. V. Shmelev, “Model’ trafika mul’tiservisnoi seti na osnove smesi samopodobnykh protsessov,” in: Mezhdunarodnyi Forum Informatizatsii MFI-2004, MTUSI, Moscow (2004), p. 12
[15] I. I. Tsitovich, “Ustoichivye modeli trafika mul’tiservisnykh setei,” in: Trudy Rossiiskogo Nauchno-Tekhnicheskogo Obshchestva Radiotekhniki, Elektroniki i Svyazi Imeni A.S.Popova. Seriya: Nauchnaya Sessiya, Posvyashchennaya Dnyu Radio, Vol. 2 (2005), pp. 271-273.
[16] V. M. Zolotarev, One-Dimensional Stable Distributions, AMS (1986).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.