×

zbMATH — the first resource for mathematics

Analysis on the \(p\)-adic superspace. II: Differential equations on \(p\)- adic superspace. (English) Zbl 0770.46036
From the author’s summary: “The Cauchy problem for differential equations on the \(p\)-adic superspace is considered. The application of this mathematical theory to the model of the supersymmetric quantum mechanism on the \(p\)-adic Riemannian surface is proposed. The non- Archimedean superdiffusion is also considered.”
[For part I see the review above].

MSC:
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
46F10 Operations with distributions and generalized functions
47E05 General theory of ordinary differential operators (should also be assigned at least one other classification number in Section 47-XX)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.529690 · Zbl 0770.46035 · doi:10.1063/1.529690
[2] DOI: 10.1142/S0217732390001748 · Zbl 1020.83500 · doi:10.1142/S0217732390001748
[3] DOI: 10.1142/S0217732390001748 · Zbl 1020.83500 · doi:10.1142/S0217732390001748
[4] DOI: 10.1142/S0217732390001748 · Zbl 1020.83500 · doi:10.1142/S0217732390001748
[5] DOI: 10.1142/S0217732390001748 · Zbl 1020.83500 · doi:10.1142/S0217732390001748
[6] DOI: 10.1142/S0217732390001748 · Zbl 1020.83500 · doi:10.1142/S0217732390001748
[7] DOI: 10.1063/1.526996 · Zbl 0612.58009 · doi:10.1063/1.526996
[8] DOI: 10.1063/1.526996 · Zbl 0612.58009 · doi:10.1063/1.526996
[9] DOI: 10.1063/1.526996 · Zbl 0612.58009 · doi:10.1063/1.526996
[10] DOI: 10.1063/1.526996 · Zbl 0612.58009 · doi:10.1063/1.526996
[11] DOI: 10.1016/0550-3213(81)90006-7 · Zbl 1258.81046 · doi:10.1016/0550-3213(81)90006-7
[12] DOI: 10.1016/0550-3213(81)90006-7 · Zbl 1258.81046 · doi:10.1016/0550-3213(81)90006-7
[13] DOI: 10.1016/0550-3213(81)90006-7 · Zbl 1258.81046 · doi:10.1016/0550-3213(81)90006-7
[14] DOI: 10.1007/BF01443609 · JFM 20.0329.02 · doi:10.1007/BF01443609
[15] Volterra V., Mem. Soc. Ital. Sci. 6 pp 1– (1887)
[16] DOI: 10.1070/RM1990v045n04ABEH002378 · Zbl 0722.46040 · doi:10.1070/RM1990v045n04ABEH002378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.