×

zbMATH — the first resource for mathematics

\(p\)-adic mathematical physics and B. Dragovich research. (English) Zbl 1364.81008
Summary: We present a brief review of some parts of \(p\)-adic mathematical physics related to the scientific work of Branko Dragovich on the occasion of his 70th birthday.

MSC:
81-03 History of quantum theory
01A70 Biographies, obituaries, personalia, bibliographies
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Biographic References:
Dragovich, Branko
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Volovich, I. V., P-adic string, Class. Quant. Grav., 4, l83-l87, (1987)
[2] Brekke, L.; Freund, P. G. O., \(p\)-adic numbers in physics, Phys. Rep., 233, 1-66, (1993)
[3] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Sci. Publ., Singapore, 1994). · Zbl 0812.46076
[4] A. Khrennikov, Information Dynamics in Cognitive, Psychological, Social and Anomalous Phenomena (Kluwer Acad. Publishers, Dordrecht, 2004). · Zbl 1175.91151
[5] A. Yu. Khrennikov and M. Nilsson, p-Adic Deterministic and Random Dynamics (Kluwer Acad. Publishers, Dordrecht, 2004). · Zbl 1135.37003
[6] Dragovich, B.; Khrennikov, A. Yu.; Kozyrev, S. V.; V.Volovich, I., On p-adicmathematical physics, p-Adic Numbers Ultrametric Anal. Appl., 1, 1-17, (2009) · Zbl 1187.81004
[7] Aref’eva, I. Ya.; Dragovic, B. G.; Volovich, I. V., On the adelic string amplitudes, Phys. Lett. B, 209, 445-450, (1988)
[8] Aref’eva, I. Ya.; Dragovic, B. G.; Volovich, I. V., Open and closed p-adic strings and quadratic extensions of number fields, Phys. Lett. B, 212, 283-291, (1988)
[9] I. Ya. Aref’eva, B. G. Dragovic and I. V. Volovich: “p-Adic superstrings,” Phys. Lett. B 214, 339-349 (1988). · Zbl 1155.81361
[10] Dragovich, B., Zeta strings, (2007)
[11] Dragovich, B., Zeta nonlocal scalar fields, Theor. Math. Phys., 157, 1671-1677, (2008) · Zbl 1155.81361
[12] Aref’eva, I. Ya.; Dragovic, B. G.; Volovich, I. V., On the p-adic summability of the anharmonic oscillator, Phys. Lett. B, 200, 512-514, (1988)
[13] Dragovic, B. G., \(p\)-adic perturbation series and adelic summability, Phys. Lett. B, 256, 392-39, (1991)
[14] Dragovic, B. G., Power series everywhere convergent on R and qp, J. Math. Phys., 34, 1143-1148, (1992) · Zbl 0778.40003
[15] Dragovic, B. G., On p-adic aspects of some perturbation series, Theor. Math. Phys., 93, 1225-1231, (1993) · Zbl 0810.60033
[16] Dragovic, B. G., Rational summation of \(p\)-adic series, Theor. Math. Phys., 100, 1055-1064, (1994) · Zbl 0860.11070
[17] Dragovich, B.; Misic, N. Z., \(p\)-adic invariant summation of some p-adic functional series, p-Adic Numbers Ultrametric Anal. Appl., 6, 275-283, (2014) · Zbl 1329.40006
[18] B. Dragovich, A. Yu. Khrennikov and N. Z.Misic, “Summation of p-adic functional series in integer points,” accepted for publ. in Filomat, [arXiv:1508.05079v1 [math.NT]] (2015).
[19] Dragovich, B., Adelic model of harmonic oscillator, Theor. Math. Phys., 101, 1404-1412, (1994) · Zbl 0856.46048
[20] Dragovich, B., Adelic harmonic oscillator, Int. J. Mod. Phys. A, 10, 2349-2365, (1995) · Zbl 1044.81585
[21] Dragovich, B.; Radyno, Ya.; Khrennikov, A., Distributions on adeles, J. Math. Sci., 142, 2105-2112, (2007) · Zbl 1163.11081
[22] Dragovich, B., On generalized functions in adelic quantum mechanics, Integr. Transf. Spec. Func., 6, 197-203, (1998) · Zbl 0918.11067
[23] Djordjevic, G. S.; Dragovich, B., \(p\)-adic path integrals for quadratic actions, Mod. Phys. Lett. A, 12, 1455-1463, (1997) · Zbl 1022.81615
[24] Djordjevic, G. S.; Dragovich, B.; Nesic, Lj., Adelic path integrals for quadratic Lagrangians, Infin. Dim. Anal. Quant. Prob. Relat. Top., 6, 179-195, (2003) · Zbl 1057.81045
[25] Volovich, I. V., Number theory as ultimate physical theory, p-Adic Numbers Ultrametric Anal. Appl., 2, 77-87, (2010) · Zbl 1258.81074
[26] Djordjevic, G. S.; Dragovich, B., \(p\)-adic and adelic harmonic oscillator with time-dependent frequency, Theor. Math. Phys., 124, 1059-1067, (2000) · Zbl 1112.81324
[27] Djordjevic, G. S.; Dragovich, B.; Nesic, Lj., P-adic and adelic free relativistic particle, Mod. Phys. Lett. A, 14, 317-325, (1999)
[28] Aref’eva, I. Ya.; Dragovich, B.; Frampton, P. H.; Volovich, I. V., Wave function of the universe and p-adic gravity, Int. J. Mod. Phys. A, 6, 4341-4358, (1991) · Zbl 0733.53039
[29] Dragovich, B., Adelic wave function of the universe, 311-321, (1995), St. Petersburg
[30] Djordjevic, G. S.; Dragovich, B.; Nesic, Lj.; Volovich, I. V., \(p\)-adic and adelic minisuperspace quantum cosmology, Int. J. Mod. Phys. A, 17, 1413-1434, (2002) · Zbl 1007.83042
[31] Dragovich, B.; Dragovich, A. Yu., A \(p\)-adic model of DNA sequence and genetic code, p-Adic Numbers Ultrametric Anal. Appl., 1, 34-41, (2009) · Zbl 1187.92039
[32] Dragovich, B.; Dragovich, A., \(p\)-adic modelling of the genome and the genetic code, Computer J., 53, 432-441, (2010) · Zbl 1256.81088
[33] Aref’eva, I. Ya.; Dragovic, B. G.; Volovich, I.V., Extra time-like dimensions lead to a vanishing cosmological constant, Phys. Lett. B, 177, 357-360, (1986)
[34] Aref’eva, I. Ya.; Volovich, I. V.; Dragovic, B. G., Spontaneous reduction in multidimensional (D=10, 11) supergravity theories with arbitrary signature, Theor. Math. Phys., 70, 297-304, (1987)
[35] Dragovic, B. G., On signature change in \(p\)-adic space-times, Mod. Phys. Lett. A, 6, 2301-2307, (1991) · Zbl 1020.81506
[36] Dragovic, B. G.; Frampton, P. H.; Urosević, B. V., Classical p-adic space-time, Mod. Phys. Lett. A, 5, 1521-1528, (1990) · Zbl 1020.83500
[37] Dragović, B.; Sazdović, B., On the structure of ultraviolet divergences in the vacuum region of quantum electrodynamics, J. Phys. A: Math. Gen., 14, 915-920, (1981)
[38] Dragovic, B. G.; Mavlo, D. P.; Filippov, A. T., Investigation of solutions of the Dyson-Schwinger equation for electron propagator in quantum electrodynamics, Fizika, 10, 51-74, (1978)
[39] Dragović, B., On dynamical mass generation in quantum electrodynamics, J. Phys. G: Nucl. Phys., 9, l1-l5, (1983) · Zbl 1094.35138
[40] Dragović, B.; Sazdović, B., On the possibility of dynamical mass generation in axial electrodynamics, J. Phys. G: Nucl. Phys., 8, 1637-1640, (1982)
[41] Dragovich, B.; Rakic, Z., Path integrals in noncommutative quantum mechanics, Theor. Math. Phys., 140, 1299-1308, (2004) · Zbl 1178.81130
[42] Dragovich, B.; Dugić, M., On decoherence in noncommutative plane with perpendicular magnetic field, J. Phys. A:Math. Gen., 38, 6603-6611, (2006) · Zbl 1072.81036
[43] Dragovich, B.; Khrennikov, A.; Mihajlović, D., Linear fractional \(p\)-adic and adelic dynamical systems, Rep. Math. Phys., 60, 55-68, (2007) · Zbl 1139.37030
[44] Dragovich, B.; Khrennikov, A., \(p\)-adic and adelic superanalysis, Bulgarian J. Phys., 33, 159-173, (2006) · Zbl 1342.58003
[45] Dragovich, B.; Joksimović, D., On possible uses of \(p\)-adic analysis in econometrics, Megatrend Rev., 4, 5-16, (2007)
[46] Dimitrijevic, I.; Dragovich, B.; Grujic, J.; Rakic, Z., Some cosmological solutions in a nonlocal modified gravity, Filomat, 29, 619-628, (2013) · Zbl 1328.83132
[47] Dragovich, B., On nonlocal modified gravity and cosmology, Springer Proc. Math. Stat., 111, 251-262, (2014) · Zbl 1328.83133
[48] I. Dimitrijevic, B. Dragovich, J. Grujic, A. S. Koshelev and Z. Rakic, “Cosmology of modified gravity with non-local f(R),” [arXiv:1509.04254 [hep-th]] (2015).
[49] Dimitrijevic, I.; Dragovich, B.; Stankovic, J.; Koshelev, A. S.; Rakic, Z., On nonlocal modified gravity and its cosmological solutions, Springer Proc. Math. Stat., 191, 35-51, (2016) · Zbl 1369.83073
[50] Dragovich, B., \(p\)-adic and adelic cosmology: p-adic origin of dark energy and dark matter, 826, (2006) · Zbl 1152.83425
[51] Dragovich, B., Towards \(p\)-adic matter in the universe, Springer Proc. Math. Stat., 36, 13-24, (2013) · Zbl 1269.81122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.