Allagan, Julian; Bobga, Benkam; Cropper, Mathew; Hilton, Anthony; Johnson, Peter; Lehel, Jenö; Leonard, Douglas Refinements of Hall’s condition. (English) Zbl 1411.05078 Australas. J. Comb. 73, Part 1, 42-70 (2019). MSC: 05C15 PDF BibTeX XML Cite \textit{J. Allagan} et al., Australas. J. Comb. 73, Part 1, 42--70 (2019; Zbl 1411.05078) Full Text: Link
Aubry, Yves; Godin, Jean-Christophe; Togni, Olivier Every triangle-free induced subgraph of the triangular lattice is \((5m,2m)\)-choosable. (English) Zbl 1283.05182 Discrete Appl. Math. 166, 51-58 (2014). MSC: 05C60 05C22 94A12 PDF BibTeX XML Cite \textit{Y. Aubry} et al., Discrete Appl. Math. 166, 51--58 (2014; Zbl 1283.05182) Full Text: DOI
Cropper, Mathew; Hilton, Anthony J. W.; Johnson, Peter D. jun.; Lehel, Jenö List multicoloring problems involving the \(k\)-fold Hall numbers. (English) Zbl 1205.05086 J. Graph Theory 65, No. 1, 16-34 (2010). MSC: 05C15 PDF BibTeX XML Cite \textit{M. Cropper} et al., J. Graph Theory 65, No. 1, 16--34 (2010; Zbl 1205.05086) Full Text: DOI
Cropper, Mathew; Gyárfás, András; Lehel, Jenő Edge list multicoloring trees: An extension of Hall’s theorem. (English) Zbl 1011.05023 J. Graph Theory 42, No. 3, 246-255 (2003). Reviewer: Dan S.Archdeacon (Burlington) MSC: 05C15 05D15 05C05 PDF BibTeX XML Cite \textit{M. Cropper} et al., J. Graph Theory 42, No. 3, 246--255 (2003; Zbl 1011.05023) Full Text: DOI