×

zbMATH — the first resource for mathematics

Robot path planning based on modified grey relational analysis. (English) Zbl 1032.93050
A path finding procedure is suggested for the computation of a collision-free path of a robot among circular obstacles in a work space. The problem is formulated as a nonlinear programming problem and is solved by applying a solution procedure involving several trials and different search stages. Some simulation results are presented.
MSC:
93C85 Automated systems (robots, etc.) in control theory
93C41 Control/observation systems with incomplete information
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/S0734-189X(86)80047-0 · doi:10.1016/S0734-189X(86)80047-0
[2] DOI: 10.1080/00207729608929278 · Zbl 0854.93091 · doi:10.1080/00207729608929278
[3] DOI: 10.1016/S0167-6911(82)80025-X · Zbl 0482.93003 · doi:10.1016/S0167-6911(82)80025-X
[4] Deng J., The Journal of Grey Systems 1 pp 1– (1989)
[5] Fletcher R, Practical Methods of Optimisation (1987)
[6] DOI: 10.1080/00207729308949477 · Zbl 0772.90060 · doi:10.1080/00207729308949477
[7] DOI: 10.1016/0165-0114(95)00083-6 · doi:10.1016/0165-0114(95)00083-6
[8] DOI: 10.1080/00207729708929358 · Zbl 0875.93234 · doi:10.1080/00207729708929358
[9] DOI: 10.1007/978-1-4615-4022-9 · doi:10.1007/978-1-4615-4022-9
[10] DOI: 10.1016/S0165-0114(95)00015-1 · doi:10.1016/S0165-0114(95)00015-1
[11] Lu H. C., The Journal of Grey System 10 pp 87– (1998)
[12] Jarvis R, Recent Trends in Mobile Robots pp 3– (1993)
[13] DOI: 10.1109/70.163777 · doi:10.1109/70.163777
[14] DOI: 10.1007/BF00309656 · Zbl 05476433 · doi:10.1007/BF00309656
[15] DOI: 10.1109/70.563653 · doi:10.1109/70.563653
[16] DOI: 10.1049/ip-cta:19971029 · Zbl 0875.93293 · doi:10.1049/ip-cta:19971029
[17] Connoly, C. L, Burns, J. B. and Weiss., R. Path planning using Laplace’s equation. Proceedings of the IEEE International Conference on Robot and Automation. Cincinnati, OH. Vol. 1, pp.2102–2106.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.