Drouot, Alexis Ubiquity of conical points in topological insulators. (Omniprésence des points de Dirac dans les isolants topologiques.) (English. French summary) Zbl 07329545 J. Éc. Polytech., Math. 8, 507-532 (2021). MSC: 47A13 81Q10 81Q05 PDF BibTeX XML Cite \textit{A. Drouot}, J. Éc. Polytech., Math. 8, 507--532 (2021; Zbl 07329545) Full Text: DOI
Dhont, Guillaume; Iwai, Toshihiro; Zhilinskií, Boris I. A study of energy band rearrangement in isolated molecules by means of the Dirac oscillator approximation. (English) Zbl 07300967 Regul. Chaotic Dyn. 25, No. 5, 424-452 (2020). MSC: 37J39 37N20 53D20 58K65 81Q70 81V55 70G45 70H33 PDF BibTeX XML Cite \textit{G. Dhont} et al., Regul. Chaotic Dyn. 25, No. 5, 424--452 (2020; Zbl 07300967) Full Text: DOI
Iwai, Toshihiro; Sadovskií, Dmitrií A.; Zhilinskií, Boris I. Angular momentum coupling, Dirac oscillators, and quantum band rearrangements in the presence of momentum reversal symmetries. (English) Zbl 07300136 J. Geom. Mech. 12, No. 3, 455-505 (2020). MSC: 81Q70 81V55 53C80 58J70 70G45 PDF BibTeX XML Cite \textit{T. Iwai} et al., J. Geom. Mech. 12, No. 3, 455--505 (2020; Zbl 07300136) Full Text: DOI
Kaufmann, Ralph M.; Khlebnikov, Sergei; Wehefritz-Kaufmann, Birgit Local models and global constraints for degeneracies and band crossings. (English) Zbl 1450.81040 J. Geom. Phys. 158, Article ID 103892, 16 p. (2020). MSC: 81Q10 35J70 35P05 81Q70 82D20 53E30 58J28 82D80 14D15 PDF BibTeX XML Cite \textit{R. M. Kaufmann} et al., J. Geom. Phys. 158, Article ID 103892, 16 p. (2020; Zbl 1450.81040) Full Text: DOI
Gomi, Kiyonori; Tauber, Clément Eigenvalue crossings in Floquet topological systems. (English) Zbl 1434.35138 Lett. Math. Phys. 110, No. 3, 465-500 (2020). MSC: 35Q41 55M25 81Q70 82B20 35P10 PDF BibTeX XML Cite \textit{K. Gomi} and \textit{C. Tauber}, Lett. Math. Phys. 110, No. 3, 465--500 (2020; Zbl 1434.35138) Full Text: DOI
Abgaryan, V.; Khvedelidze, A.; Torosyan, A. On the moduli space of Wigner quasiprobability distributions for \(N\)-dimensional quantum systems. (English) Zbl 1435.81110 J. Math. Sci., New York 240, No. 5, 617-633 (2019) and Zap. Nauchn. Semin. POMI 468, 177-201 (2018). MSC: 81S30 14J15 53D05 81P16 81S10 57R10 22E45 PDF BibTeX XML Cite \textit{V. Abgaryan} et al., J. Math. Sci., New York 240, No. 5, 617--633 (2019; Zbl 1435.81110) Full Text: DOI
Nenashev, Gleb Classification of external zonotopal algebras. (English) Zbl 1409.05048 Electron. J. Comb. 26, No. 1, Research Paper P1.32, 10 p. (2019). MSC: 05B35 05C05 05E40 13P99 PDF BibTeX XML Cite \textit{G. Nenashev}, Electron. J. Comb. 26, No. 1, Research Paper P1.32, 10 p. (2019; Zbl 1409.05048) Full Text: Link arXiv
Breiding, Paul; Kozhasov, Khazhgali; Lerario, Antonio On the geometry of the set of symmetric matrices with repeated eigenvalues. (English) Zbl 07146873 Arnold Math. J. 4, No. 3-4, 423-443 (2018). MSC: 47A 47B PDF BibTeX XML Cite \textit{P. Breiding} et al., Arnold Math. J. 4, No. 3--4, 423--443 (2018; Zbl 07146873) Full Text: DOI arXiv
Kirillov, Anatol N.; Nenashev, Gleb On \(Q\)-deformations of Postnikov-Shapiro algebras. (English. French summary) Zbl 1385.05086 Sémin. Lothar. Comb. 78B, 78B.55, 12 p. (2017). MSC: 05E15 13F20 PDF BibTeX XML Cite \textit{A. N. Kirillov} and \textit{G. Nenashev}, Sémin. Lothar. Comb. 78B, 78B.55, 12 p. (2017; Zbl 1385.05086) Full Text: Link arXiv
Dhont, Guillaume; Iwai, Toshihiro; Zhilinskií, Boris Topological phase transition in a molecular Hamiltonian with symmetry and pseudo-symmetry, studied through quantum, semi-quantum and classical models. (English) Zbl 1433.81164 SIGMA, Symmetry Integrability Geom. Methods Appl. 13, Paper 054, 34 p. (2017). MSC: 81V55 15B57 PDF BibTeX XML Cite \textit{G. Dhont} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 13, Paper 054, 34 p. (2017; Zbl 1433.81164) Full Text: DOI arXiv
Iwai, T.; Zhilinskii, B. Chern number modification in crossing the boundary between different band structures: three-band models with cubic symmetry. (English) Zbl 1364.53073 Rev. Math. Phys. 29, No. 2, Article ID 1750004, 91 p. (2017). Reviewer: Gabor Etesi (Budapest) MSC: 53C80 15B57 81Q70 81R05 PDF BibTeX XML Cite \textit{T. Iwai} and \textit{B. Zhilinskii}, Rev. Math. Phys. 29, No. 2, Article ID 1750004, 91 p. (2017; Zbl 1364.53073) Full Text: DOI
Iwai, Toshihiro; Zhilinskii, Boris Local description of band rearrangements. (English) Zbl 1317.53104 Acta Appl. Math. 137, No. 1, 97-121 (2015). MSC: 53C80 81Q70 81V55 PDF BibTeX XML Cite \textit{T. Iwai} and \textit{B. Zhilinskii}, Acta Appl. Math. 137, No. 1, 97--121 (2015; Zbl 1317.53104) Full Text: DOI arXiv
Iwai, T.; Zhilinskii, B. Rearrangement of energy bands: Chern numbers in the presence of cubic symmetry. (English) Zbl 1278.81160 Acta Appl. Math. 120, No. 1, 153-175 (2012). MSC: 81V45 81Q10 20G45 81S30 19L10 PDF BibTeX XML Cite \textit{T. Iwai} and \textit{B. Zhilinskii}, Acta Appl. Math. 120, No. 1, 153--175 (2012; Zbl 1278.81160) Full Text: DOI
Katanaev, Mikhaĭl Orinovich Simple proof of the adiabatic theorem. (Russian. English summary) Zbl 1449.35362 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 2011, No. 1(22), 99-107 (2011). MSC: 35Q40 PDF BibTeX XML Cite \textit{M. O. Katanaev}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 2011, No. 1(22), 99--107 (2011; Zbl 1449.35362) Full Text: DOI MNR
Agrachev, A. A. On the space of symmetric operators with multiple ground states. (English. Russian original) Zbl 1271.46056 Funct. Anal. Appl. 45, No. 4, 241-251 (2011); translation from Funkts. Anal. Prilozh. 45, No. 4, 1-15 (2011). MSC: 46M18 PDF BibTeX XML Cite \textit{A. A. Agrachev}, Funct. Anal. Appl. 45, No. 4, 241--251 (2011; Zbl 1271.46056); translation from Funkts. Anal. Prilozh. 45, No. 4, 1--15 (2011) Full Text: DOI
Arnold, V. I. Topological properties of eigenoscillations in mathematical physics. (English. Russian original) Zbl 1229.35220 Proc. Steklov Inst. Math. 273, 25-34 (2011); translation from Tr. Mat. Inst. Steklova 273, 30-40 (2011). Reviewer: M. Marin (Brasov) MSC: 35Q40 16P90 58H10 81R10 81R50 PDF BibTeX XML Cite \textit{V. I. Arnold}, Proc. Steklov Inst. Math. 273, 25--34 (2011; Zbl 1229.35220); translation from Tr. Mat. Inst. Steklova 273, 30--40 (2011) Full Text: DOI
Mailybaev, A. A.; Kirillov, O. N.; Seyranian, A. P. Berry phase around degeneracies. (English. Russian original) Zbl 1155.81335 Dokl. Math. 73, No. 1, 129-133 (2006); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 406, No. 4, 464-468 (2006). MSC: 81Q70 81Q05 PDF BibTeX XML Cite \textit{A. A. Mailybaev} et al., Dokl. Math. 73, No. 1, 129--133 (2006; Zbl 1155.81335); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 406, No. 4, 464--468 (2006) Full Text: DOI
Bliokh, K. Yu. Generalization of Berry’s geometric phase, equivalence of the Hamiltonian nature, quantizability and strong stability of linear oscillatory systems, and conservation of adiabatic invariants. (English) Zbl 1060.81030 J. Math. Phys. 43, No. 11, 5624-5636 (2002). MSC: 81Q70 34D35 34E10 PDF BibTeX XML Cite \textit{K. Yu. Bliokh}, J. Math. Phys. 43, No. 11, 5624--5636 (2002; Zbl 1060.81030) Full Text: DOI
Bliokh, K. Yu. Geometric amplitude, adiabatic invariants, quantization, and strong stability of Hamiltonian systems. (English) Zbl 1052.70011 J. Math. Phys. 43, No. 1, 25-42 (2002). MSC: 70H11 70H14 81Q70 PDF BibTeX XML Cite \textit{K. Yu. Bliokh}, J. Math. Phys. 43, No. 1, 25--42 (2002; Zbl 1052.70011) Full Text: DOI