Baumstark, Simon; Schratz, Katharina Asymptotic preserving trigonometric integrators for the quantum Zakharov system. (English) Zbl 07329844 BIT 61, No. 1, 61-81 (2021). MSC: 65N15 PDF BibTeX XML Cite \textit{S. Baumstark} and \textit{K. Schratz}, BIT 61, No. 1, 61--81 (2021; Zbl 07329844) Full Text: DOI
Baumstark, Simon; Schneider, Guido; Schratz, Katharina Effective numerical simulation of the Klein-Gordon-Zakharov system in the Zakharov limit. (English) Zbl 07315216 Dörfler, Willy (ed.) et al., Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23–27, 2018. Cham: Birkhäuser (ISBN 978-3-030-47173-6/hbk; 978-3-030-47174-3/ebook). Trends in Mathematics, 37-48 (2020). MSC: 65 PDF BibTeX XML Cite \textit{S. Baumstark} et al., in: Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018. Cham: Birkhäuser. 37--48 (2020; Zbl 07315216) Full Text: DOI
Wang, Tingchun; Wang, Jialing; Guo, Boling Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation. (English) Zbl 1453.65366 J. Comput. Phys. 404, Article ID 109116, 21 p. (2020). MSC: 65M70 65M12 65M15 35Q55 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Comput. Phys. 404, Article ID 109116, 21 p. (2020; Zbl 1453.65366) Full Text: DOI
Wang, Tingchun; Guo, Boling Unconditional convergence of linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation. (English) Zbl 1426.65132 Sci. China, Math. 62, No. 9, 1669-1686 (2019). MSC: 65M06 65M12 65M15 35Q55 PDF BibTeX XML Cite \textit{T. Wang} and \textit{B. Guo}, Sci. China, Math. 62, No. 9, 1669--1686 (2019; Zbl 1426.65132) Full Text: DOI
Martínez, Romeo; Macías-Díaz, J. E.; Hendy, Ahmed S. Theoretical analysis of an explicit energy-conserving scheme for a fractional Klein-Gordon-Zakharov system. (English) Zbl 1428.35595 Appl. Numer. Math. 146, 245-259 (2019). MSC: 35Q82 82D10 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{R. Martínez} et al., Appl. Numer. Math. 146, 245--259 (2019; Zbl 1428.35595) Full Text: DOI
Wang, Tingchun; Zhao, Xiaofei Unconditional \(L^{\infty }\)-convergence of two compact conservative finite difference schemes for the nonlinear Schrödinger equation in multi-dimensions. (English) Zbl 1404.65103 Calcolo 55, No. 3, Paper No. 34, 26 p. (2018). MSC: 65M06 65M12 35Q55 65M15 PDF BibTeX XML Cite \textit{T. Wang} and \textit{X. Zhao}, Calcolo 55, No. 3, Paper No. 34, 26 p. (2018; Zbl 1404.65103) Full Text: DOI
Gauckler, Ludwig On a splitting method for the Zakharov system. (English) Zbl 1397.65166 Numer. Math. 139, No. 2, 349-379 (2018). Reviewer: Charis Harley (Johannesburg) MSC: 65M15 65P10 65M20 35Q53 65N35 35B65 PDF BibTeX XML Cite \textit{L. Gauckler}, Numer. Math. 139, No. 2, 349--379 (2018; Zbl 1397.65166) Full Text: DOI arXiv
Zhou, Xuanxuan; Zhang, Luming A conservative compact difference scheme for the Zakharov equations in one space dimension. (English) Zbl 1387.65093 Int. J. Comput. Math. 95, No. 2, 279-302 (2018). MSC: 65M06 35Q53 PDF BibTeX XML Cite \textit{X. Zhou} and \textit{L. Zhang}, Int. J. Comput. Math. 95, No. 2, 279--302 (2018; Zbl 1387.65093) Full Text: DOI
Bao, Weizhu; Su, Chunmei A uniformly and optimally accurate method for the Zakharov system in the subsonic limit regime. (English) Zbl 1390.35317 SIAM J. Sci. Comput. 40, No. 2, A929-A953 (2018). MSC: 35Q55 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{W. Bao} and \textit{C. Su}, SIAM J. Sci. Comput. 40, No. 2, A929--A953 (2018; Zbl 1390.35317) Full Text: DOI
Cai, Yongyong; Yuan, Yongjun Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime. (English) Zbl 1384.35116 Math. Comput. 87, No. 311, 1191-1225 (2018). MSC: 35Q55 65M06 65M12 65M15 76G25 76X05 PDF BibTeX XML Cite \textit{Y. Cai} and \textit{Y. Yuan}, Math. Comput. 87, No. 311, 1191--1225 (2018; Zbl 1384.35116) Full Text: DOI
Ma, Chupeng; Cao, Liqun A Crank-Nicolson finite element method and the optimal error estimates for the modified time-dependent Maxwell-Schrödinger equations. (English) Zbl 1382.65322 SIAM J. Numer. Anal. 56, No. 1, 369-396 (2018). MSC: 65M60 65M15 35Q61 35Q41 PDF BibTeX XML Cite \textit{C. Ma} and \textit{L. Cao}, SIAM J. Numer. Anal. 56, No. 1, 369--396 (2018; Zbl 1382.65322) Full Text: DOI arXiv
Wang, Tingchun; Jiang, Jiaping; Xue, Xiang Unconditional and optimal \(H^{1}\) error estimate of a Crank-Nicolson finite difference scheme for the Gross-Pitaevskii equation with an angular momentum rotation term. (English) Zbl 1379.65066 J. Math. Anal. Appl. 459, No. 2, 945-958 (2018). MSC: 65M06 65M15 65M12 35Q76 35Q82 35Q55 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Math. Anal. Appl. 459, No. 2, 945--958 (2018; Zbl 1379.65066) Full Text: DOI
Su, Chunmei Comparison of numerical methods for the Zakharov system in the subsonic limit regime. (English) Zbl 1432.76140 J. Comput. Appl. Math. 330, 441-455 (2018). MSC: 76G25 65M70 76X05 82D10 PDF BibTeX XML Cite \textit{C. Su}, J. Comput. Appl. Math. 330, 441--455 (2018; Zbl 1432.76140) Full Text: DOI
Hu, Jinsong; Zhou, Jun; Zhuo, Ru A high-accuracy conservative difference approximation for Rosenau-KdV equation. (English) Zbl 1412.65079 J. Nonlinear Sci. Appl. 10, No. 6, 3013-3022 (2017). MSC: 65M06 65N30 PDF BibTeX XML Cite \textit{J. Hu} et al., J. Nonlinear Sci. Appl. 10, No. 6, 3013--3022 (2017; Zbl 1412.65079) Full Text: DOI
Pan, Xintian; Zhang, Luming On the convergence of a high-accuracy conservative scheme for the Zakharov equations. (English) Zbl 1411.65115 Appl. Math. Comput. 297, 79-91 (2017). MSC: 65M06 65M70 35L70 35Q55 65M12 65M15 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Zhang}, Appl. Math. Comput. 297, 79--91 (2017; Zbl 1411.65115) Full Text: DOI
Ahmad, Fayyaz; Rehman, Shafiq Ur; Ullah, Malik Zaka; Aljahdali, Hani Moaiteq; Ahmad, Shahid; Alshomrani, Ali Saleh; Carrasco, Juan A.; Ahmad, Shamshad; Sivasankaran, Sivanandam Frozen Jacobian multistep iterative method for solving nonlinear IVPs and BVPs. (English) Zbl 1367.65077 Complexity 2017, Article ID 9407656, 30 p. (2017). MSC: 65H10 65M70 PDF BibTeX XML Cite \textit{F. Ahmad} et al., Complexity 2017, Article ID 9407656, 30 p. (2017; Zbl 1367.65077) Full Text: DOI
Wang, Huan; Li, Shuguang; Wang, Jue A conservative weighted finite difference scheme for the generalized Rosenau-RLW equation. (English) Zbl 1359.65165 Comput. Appl. Math. 36, No. 1, 63-78 (2017). MSC: 65M06 65M12 65M22 PDF BibTeX XML Cite \textit{H. Wang} et al., Comput. Appl. Math. 36, No. 1, 63--78 (2017; Zbl 1359.65165) Full Text: DOI
Sun, Weiwei; Wang, Jilu Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D. (English) Zbl 1357.65148 J. Comput. Appl. Math. 317, 685-699 (2017). MSC: 65M15 35Q55 65M06 PDF BibTeX XML Cite \textit{W. Sun} and \textit{J. Wang}, J. Comput. Appl. Math. 317, 685--699 (2017; Zbl 1357.65148) Full Text: DOI
He, Dongdong Exact solitary solution and a three-level linearly implicit conservative finite difference method for the generalized Rosenau-Kawahara-RLW equation with generalized Novikov type perturbation. (English) Zbl 1349.37065 Nonlinear Dyn. 85, No. 1, 479-498 (2016). MSC: 37K10 37K05 35B06 PDF BibTeX XML Cite \textit{D. He}, Nonlinear Dyn. 85, No. 1, 479--498 (2016; Zbl 1349.37065) Full Text: DOI
Ahmad, Fayyaz; Tohidi, Emran; Carrasco, Juan A. A parameterized multi-step Newton method for solving systems of nonlinear equations. (English) Zbl 1350.65046 Numer. Algorithms 71, No. 3, 631-653 (2016). Reviewer: Przemysław Stpiczyński (Lublin) MSC: 65H10 65N22 PDF BibTeX XML Cite \textit{F. Ahmad} et al., Numer. Algorithms 71, No. 3, 631--653 (2016; Zbl 1350.65046) Full Text: DOI
He, Dongdong New solitary solutions and a conservative numerical method for the Rosenau-Kawahara equation with power law nonlinearity. (English) Zbl 1348.76039 Nonlinear Dyn. 82, No. 3, 1177-1190 (2015). MSC: 76B25 35Q35 PDF BibTeX XML Cite \textit{D. He}, Nonlinear Dyn. 82, No. 3, 1177--1190 (2015; Zbl 1348.76039) Full Text: DOI
Atouani, Noureddine; Omrani, Khaled On the convergence of conservative difference schemes for the 2D generalized Rosenau-Korteweg de Vries equation. (English) Zbl 1328.65174 Appl. Math. Comput. 250, 832-847 (2015). MSC: 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{N. Atouani} and \textit{K. Omrani}, Appl. Math. Comput. 250, 832--847 (2015; Zbl 1328.65174) Full Text: DOI
Li, Xueyang; Xiao, Aiguo Time-splitting finite difference method with the wavelet-adaptive grids for semiclassical Gross-Pitaevskii equation in supercritical case. (English) Zbl 1349.82033 J. Comput. Phys. 267, 146-161 (2014). MSC: 82C10 82C80 65M06 PDF BibTeX XML Cite \textit{X. Li} and \textit{A. Xiao}, J. Comput. Phys. 267, 146--161 (2014; Zbl 1349.82033) Full Text: DOI
Bhrawy, A. H. An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. (English) Zbl 1339.65188 Appl. Math. Comput. 247, 30-46 (2014). MSC: 65M70 35L70 35Q55 PDF BibTeX XML Cite \textit{A. H. Bhrawy}, Appl. Math. Comput. 247, 30--46 (2014; Zbl 1339.65188) Full Text: DOI
Luo, Yan; Xu, Youcai; Feng, Minfu Conservative difference scheme for generalized Rosenau-KdV equation. (English) Zbl 1291.76231 Adv. Math. Phys. 2014, Article ID 986098, 7 p. (2014). MSC: 76M20 65N06 35Q53 PDF BibTeX XML Cite \textit{Y. Luo} et al., Adv. Math. Phys. 2014, Article ID 986098, 7 p. (2014; Zbl 1291.76231) Full Text: DOI
Hu, Jinsong; Xu, Youcai; Hu, Bing; Xie, Xiaoping Two conservative difference schemes for Rosenau-Kawahara equation. (English) Zbl 1302.65191 Adv. Math. Phys. 2014, Article ID 217393, 11 p. (2014). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{J. Hu} et al., Adv. Math. Phys. 2014, Article ID 217393, 11 p. (2014; Zbl 1302.65191) Full Text: DOI
Wang, Tingchun; Guo, Boling; Xu, Qiubin Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. (English) Zbl 1349.65347 J. Comput. Phys. 243, 382-399 (2013). MSC: 65M06 35Q55 65M12 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Comput. Phys. 243, 382--399 (2013; Zbl 1349.65347) Full Text: DOI
Pan, Xintian; Zhang, Luming High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein-Gordon equation. (English) Zbl 1329.65185 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 92, 108-118 (2013). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Zhang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 92, 108--118 (2013; Zbl 1329.65185) Full Text: DOI
Hu, Jinsong; Xu, Youcai; Hu, Bing Conservative linear difference scheme for Rosenau-KdV equation. (English) Zbl 1282.35332 Adv. Math. Phys. 2013, Article ID 423718, 7 p. (2013). MSC: 35Q53 PDF BibTeX XML Cite \textit{J. Hu} et al., Adv. Math. Phys. 2013, Article ID 423718, 7 p. (2013; Zbl 1282.35332) Full Text: DOI
Bao, Weizhu; Cai, Yongyong Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. (English) Zbl 1264.65146 Math. Comput. 82, No. 281, 99-128 (2013). Reviewer: Qin Mengzhao (Beijing) MSC: 65M15 65M12 65M06 65M22 81-08 35Q40 PDF BibTeX XML Cite \textit{W. Bao} and \textit{Y. Cai}, Math. Comput. 82, No. 281, 99--128 (2013; Zbl 1264.65146) Full Text: DOI
Ji, Yuanyuan; Ma, Heping Uniform convergence of the Legendre spectral method for the Zakharov equations. (English) Zbl 1364.76147 Numer. Methods Partial Differ. Equations 29, No. 2, 475-495 (2013). MSC: 76M22 65M70 PDF BibTeX XML Cite \textit{Y. Ji} and \textit{H. Ma}, Numer. Methods Partial Differ. Equations 29, No. 2, 475--495 (2013; Zbl 1364.76147) Full Text: DOI
Chen, Juan; Zhang, Lu-ming Numerical simulation for the initial-boundary value problem of the Klein-Gordon-Zakharov equations. (English) Zbl 1358.65055 Acta Math. Appl. Sin., Engl. Ser. 28, No. 2, 325-336 (2012). MSC: 65M06 35Q40 65M12 65M15 PDF BibTeX XML Cite \textit{J. Chen} and \textit{L.-m. Zhang}, Acta Math. Appl. Sin., Engl. Ser. 28, No. 2, 325--336 (2012; Zbl 1358.65055) Full Text: DOI
Pan, Xintian; Zhang, Luming Numerical simulation for general rosenau-RLW equation: an average linearized conservative scheme. (English) Zbl 1264.65140 Math. Probl. Eng. 2012, Article ID 517818, 15 p. (2012). MSC: 65M06 35Q53 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Zhang}, Math. Probl. Eng. 2012, Article ID 517818, 15 p. (2012; Zbl 1264.65140) Full Text: DOI
Wang, Tingchun; Jiang, Yong Point-wise errors of two conservative difference schemes for the Klein-Gordon-Schrödinger equation. (English) Zbl 1263.35184 Commun. Nonlinear Sci. Numer. Simul. 17, No. 12, 4565-4575 (2012). MSC: 35Q40 81Q05 PDF BibTeX XML Cite \textit{T. Wang} and \textit{Y. Jiang}, Commun. Nonlinear Sci. Numer. Simul. 17, No. 12, 4565--4575 (2012; Zbl 1263.35184) Full Text: DOI
Pan, Xintian; Zhang, Luming On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation. (English) Zbl 1252.65144 Appl. Math. Modelling 36, No. 8, 3371-3378 (2012). MSC: 65M06 35Q53 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Zhang}, Appl. Math. Modelling 36, No. 8, 3371--3378 (2012; Zbl 1252.65144) Full Text: DOI
Zhang, Luming; Bai, Dongmei; Wang, Shanshan Numerical analysis for a conservative difference scheme to solve the Schrödinger-Boussinesq equation. (English) Zbl 1230.65099 J. Comput. Appl. Math. 235, No. 17, 4899-4915 (2011). Reviewer: Petr Sváček (Praha) MSC: 65M06 65M12 65M15 35Q55 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Comput. Appl. Math. 235, No. 17, 4899--4915 (2011; Zbl 1230.65099) Full Text: DOI
Zuo, Jin-Ming; Zhang, Yao-Ming; Zhang, Tian-De; Chang, Feng A new conservative difference scheme for the general Rosenau-RLW equation. (English) Zbl 1206.65216 Bound. Value Probl. 2010, Article ID 516260, 13 p. (2010). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 65M06 35L75 65M12 PDF BibTeX XML Cite \textit{J.-M. Zuo} et al., Bound. Value Probl. 2010, Article ID 516260, 13 p. (2010; Zbl 1206.65216) Full Text: DOI EuDML
Wang, Tingchun; Guo, Boling; Zhang, Luming New conservative difference schemes for a coupled nonlinear Schrödinger system. (English) Zbl 1205.65242 Appl. Math. Comput. 217, No. 4, 1604-1619 (2010). Reviewer: Rémi Vaillancourt (Ottawa) MSC: 65M06 35Q55 65M12 65Y05 PDF BibTeX XML Cite \textit{T. Wang} et al., Appl. Math. Comput. 217, No. 4, 1604--1619 (2010; Zbl 1205.65242) Full Text: DOI
Xu, Qiu-Bin; Chang, Qian-Shun New numerical methods for the coupled nonlinear Schrödinger equations. (English) Zbl 1188.65142 Acta Math. Appl. Sin., Engl. Ser. 26, No. 2, 205-218 (2010). MSC: 65M70 65M06 35Q55 65M12 35Q51 PDF BibTeX XML Cite \textit{Q.-B. Xu} and \textit{Q.-S. Chang}, Acta Math. Appl. Sin., Engl. Ser. 26, No. 2, 205--218 (2010; Zbl 1188.65142) Full Text: DOI
Xia, Yinhua; Xu, Yan; Shu, Chi-Wang Local discontinuous Galerkin methods for the generalized Zakharov system. (English) Zbl 1180.76035 J. Comput. Phys. 229, No. 4, 1238-1259 (2010). MSC: 76M10 65M60 35K55 PDF BibTeX XML Cite \textit{Y. Xia} et al., J. Comput. Phys. 229, No. 4, 1238--1259 (2010; Zbl 1180.76035) Full Text: DOI
Wang, Jian Multisymplectic numerical method for the Zakharov system. (English) Zbl 1198.82062 Comput. Phys. Commun. 180, No. 7, 1063-1071 (2009). MSC: 82D10 82C80 35L67 PDF BibTeX XML Cite \textit{J. Wang}, Comput. Phys. Commun. 180, No. 7, 1063--1071 (2009; Zbl 1198.82062) Full Text: DOI
Wang, Tingchun; Nie, Tao; Zhang, Luming Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system. (English) Zbl 1172.65049 J. Comput. Appl. Math. 231, No. 2, 745-759 (2009). Reviewer: Norikazu Saito (Tokyo) MSC: 65M06 65M12 35Q55 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Comput. Appl. Math. 231, No. 2, 745--759 (2009; Zbl 1172.65049) Full Text: DOI
Kumar, Arun An analytical solution for a coupled partial differential equation. (English) Zbl 1169.35375 Appl. Math. Comput. 212, No. 1, 245-250 (2009). MSC: 35Q55 35A15 35C05 PDF BibTeX XML Cite \textit{A. Kumar}, Appl. Math. Comput. 212, No. 1, 245--250 (2009; Zbl 1169.35375) Full Text: DOI
Wang, Tingchun; Nie, Tao; Zhang, Luming; Chen, Fangqi Numerical simulation of a nonlinearly coupled Schrödinger system: A linearly uncoupled finite difference scheme. (English) Zbl 1202.65116 Math. Comput. Simul. 79, No. 3, 607-621 (2008). Reviewer: Snezhana Gocheva-Ilieva (Plovdiv) MSC: 65M06 65M12 35Q55 35Q51 PDF BibTeX XML Cite \textit{T. Wang} et al., Math. Comput. Simul. 79, No. 3, 607--621 (2008; Zbl 1202.65116) Full Text: DOI
Chang, Qianshun; Wong, Yau-Shu; Lin, Chi-Kun Numerical computations for long-wave short-wave interaction equations in semi-classical limit. (English) Zbl 1161.65069 J. Comput. Phys. 227, No. 19, 8489-8507 (2008). Reviewer: Maria Christina Mariani (Las Cruces) MSC: 65M06 PDF BibTeX XML Cite \textit{Q. Chang} et al., J. Comput. Phys. 227, No. 19, 8489--8507 (2008; Zbl 1161.65069) Full Text: DOI
Omrani, Khaled; Abidi, Faycal; Achouri, Talha; Khiari, Noomen A new conservative finite difference scheme for the Rosenau equation. (English) Zbl 1156.65078 Appl. Math. Comput. 201, No. 1-2, 35-43 (2008). Reviewer: Weizhong Dai (Ruston) MSC: 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{K. Omrani} et al., Appl. Math. Comput. 201, No. 1--2, 35--43 (2008; Zbl 1156.65078) Full Text: DOI
Wang, Tingchun; Chen, Juan; Zhang, Luming Conservative difference methods for the Klein-Gordon-Zakharov equations. (English) Zbl 1123.65091 J. Comput. Appl. Math. 205, No. 1, 430-452 (2007). Reviewer: Maria Christina Mariani (Las Cruces) MSC: 65M06 35Q53 65M12 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Comput. Appl. Math. 205, No. 1, 430--452 (2007; Zbl 1123.65091) Full Text: DOI
Wang, Ting-Chun; Zhang, Lu-Ming Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator. (English) Zbl 1161.65349 Appl. Math. Comput. 182, No. 2, 1780-1794 (2006). MSC: 65M06 PDF BibTeX XML Cite \textit{T.-C. Wang} and \textit{L.-M. Zhang}, Appl. Math. Comput. 182, No. 2, 1780--1794 (2006; Zbl 1161.65349) Full Text: DOI
Zhang, Luming Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space dimension. (English) Zbl 1080.65084 Appl. Math. Comput. 163, No. 1, 343-355 (2005). Reviewer: Stefan Jakobsson (Stockholm) MSC: 65M12 65M06 35Q53 35Q55 81T80 PDF BibTeX XML Cite \textit{L. Zhang}, Appl. Math. Comput. 163, No. 1, 343--355 (2005; Zbl 1080.65084) Full Text: DOI
Jin, Shi; Markowich, Peter A.; Zheng, Chunxiong Numerical simulation of a generalized Zakharov system. (English) Zbl 1079.65101 J. Comput. Phys. 201, No. 1, 376-395 (2004). MSC: 65M70 76M25 76X05 82D10 PDF BibTeX XML Cite \textit{S. Jin} et al., J. Comput. Phys. 201, No. 1, 376--395 (2004; Zbl 1079.65101) Full Text: DOI
Bao, Weizhu; Sun, Fangfang; Wei, Guo Wei Numerical methods for the generalized Zakharov system. (English) Zbl 1236.76043 J. Comput. Phys. 190, No. 1, 201-228 (2003). MSC: 76M22 76X05 65M70 PDF BibTeX XML Cite \textit{W. Bao} et al., J. Comput. Phys. 190, No. 1, 201--228 (2003; Zbl 1236.76043) Full Text: DOI