×

zbMATH — the first resource for mathematics

Effect of frictional force and nose shape on axisymmetric deformations of a thick thermoviscoplastic target. (English) Zbl 0848.73017
We study thermomechanical deformations of a thermally softening viscoplastic thick target impacted at normal incidence by a cylindrical rod made of a material considerably harder than the target material. Thus we regard the penetrator to be rigid and analyze the effect of the penetrator nose shape and the frictional force at the target/penetrator interface on target’s deformations. In the postulated expression for the frictional force, the coefficient of friction, defined as the ratio of the tangential force at a point to the normal force there, is a function of the relative speed of sliding between the two bodies. The computed depth of penetration is found to match very well with that observed in experiments.

MSC:
74M20 Impact in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Longcope, D. B., Forrestal, M. J.: Penetration of targets described by a Mohr-Coulomb failure criterion with a tension cutoff. J. Appl. Mech.50, 327-333 (1983). · Zbl 0518.73016 · doi:10.1115/1.3167040
[2] Forrestal, M. J.: Penetration into dry porous rock. Int. J. Solids Struct.22, 1485-1500 (1986). · Zbl 0603.73103 · doi:10.1016/0020-7683(86)90057-0
[3] Chen, E. P.: Penetration into dry porous rock: a numerical study on sliding friction simulation. Theoret. and Appl. Fract. Mech.11, 135-141 (1989). · doi:10.1016/0167-8442(89)90042-6
[4] Chen, X., Batra, R. C.: Effect of frictional force on the steady state axisymmetric deformations of a viscoplastic target. Acta Mech.97, 153-168 (1993). · Zbl 0825.73636 · doi:10.1007/BF01176523
[5] Forrestal, M. J., Brar, N. S., Luk, V. K.: Penetration of strain-hardening targets with rigid sphericalnosed rods. J. Appl. Mech.58, 7-10 (1991). · doi:10.1115/1.2897183
[6] Backman, M. E., Goldsmith, W.: The mechanics of penetration of projectiles into targets. Int. J. Eng. Sci.16, 1-99 (1978). · doi:10.1016/0020-7225(78)90002-2
[7] Wright, T. W., Frank, K.: Approaches to penetration problems. In: Impact: effects of fast transient loading (Ammann, W. J., Lui, W. K., Studer, J. A., Zimmermann, T., eds.), Rotterdam: Balkema, A. A. 1988.
[8] Anderson, C. E., Bodner, S. R.: The status of ballistic impact modelling. Proc. 3rd TACOM Armor Coordinating Conf., Feb. 17-19, 1987, Monterey, CA.
[9] Zukas, J. A., Nicholas, T., Swift, H. F., Greszczuk, L. B., Curran, D. R.: Impact dynamics. New York: Wiley-Interscience 1982.
[10] Blazynski, T. Z.: In: Materials at high strain rates (Blazynski, T. Z., ed) London New York: Elsevier 1987.
[11] MaCauley, M.: Introduction to impact engineering, London New York: Chapman and Hall 1987.
[12] Zukas, J. A.: High velocity impact dynamics. New York: Wiley 1990.
[13] Awerbuch, J., Bodner, S. R.: Analysis of the mechanics of perforation of projectiles in metallic plates. Int. J. Solids Struct.10, 671-684 (1974). · doi:10.1016/0020-7683(74)90050-X
[14] Ravid, M., Bodner, S. R.: Dynamic perforation of viscoplastic plates by rigid projectiles. Int. J. Eng. Sci.21, 577-591 (1983). · doi:10.1016/0020-7225(83)90105-2
[15] Ravid, M., Bodner, S. R., Holcman, I.: Analysis of very high speed impact. Int. J. Eng. Sci.25, 473-482 (1987). · doi:10.1016/0020-7225(87)90073-5
[16] Forrestal, M. J., Okajima, K., Luk, V. K.: Penetration of 6061-T651 aluminum targets with rigid long rods. J. Appl. Mech.55, 755-760 (1988). · doi:10.1115/1.3173718
[17] Batra, R. C., Chen, X.: An approximate analysis of steady axisymmetric deformations of viscoplastic targets. Int. J. Eng. Sci.28, 1347-1358 (1990). · doi:10.1016/0020-7225(90)90081-S
[18] Batra, R. C.: Steady state penetration of thermoviscoplastic targets. Comp. Mech.3, 1-12 (1988). · Zbl 0626.73130 · doi:10.1007/BF00280747
[19] Batra, R. C., Jayachandran, R.: Effect of constitutive models on steady state axisymmetric deformations of thermoelastic viscoplastic targets. Int. J. Impact Eng.12, 209-226 (1992). · doi:10.1016/0734-743X(92)90421-O
[20] Batra, R. C., Gobinath, T.: Steady state axisymmetric deformations of a thermoviscoplastic rod penetrating a thick thermoviscoplastic target. Int. J. Impact Eng.11, 1-31 (1991). · doi:10.1016/0734-743X(91)90028-E
[21] Chen, X., Batra, R. C.: Deep penetration of thick thermoviscoplastic target by long rigid rods. (Submitted for publication).
[22] Batra, R. C., Lin, P. R.: Steady state axisymmetric deformations of a thermoviscoplastic rod striking a hemispherical rigid cavity. Int. J. Impact Eng.8, 99-113 (1989). · doi:10.1016/0734-743X(89)90010-9
[23] Batra, R. C., Liu, D. S.: Adiabatic shear banding in plane strain problems. J. Appl. Mech.56, 527-534 (1989). · Zbl 0709.73025 · doi:10.1115/1.3176122
[24] Lysmer, J., Kuhlemeyer, R. L.: Finite dynamic model for infinite media. ASCE J. Eng. Mech.95, 859-877 (1969).
[25] Hallquist, J. O., Goudreau, G. L., Benson, D. J.: Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comp. Meth. Appl. Mech. Eng.51, 107-137 (1985). · Zbl 0567.73120 · doi:10.1016/0045-7825(85)90030-1
[26] Bathe, K. J.: Finite element procedures in engineering analysis. Englewood Cliffs: Prentice-Hall 1982. · Zbl 0528.65053
[27] Bai, Y., Dodd, B.: Adiabatic shear localization: occurrence, theories, and applications. New York: Pergamon Press 1992.
[28] Chen, X.: Finite element analysis of axisymmetric deformations of thick thermoviscoplastic targets. Ph. D. dissertation, University of Missouri-Rolla 1993.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.