×

zbMATH — the first resource for mathematics

Bilinear control and application to flexible a. c. transmission systems. (English) Zbl 0964.93009
Bilinear, continuous-time, finite-dimensional control systems with constant parameters are considered. Using algebraic and topological methods, local controllability with uniformly nonnegative controls are discussed. Relationships between controllability and stabilizability are also explained. Simple numerical examples which illustrate the theoretical considerations are presented. The possible applications and relations to the results existing in the literature are mentioned. An extensive list of references is presented. Similar controllability problems for bilinear control systems have been recently considered in the paper [A. Khapalov and R. Mohler, IEEE Trans. Autom. Control 41, 1342-1346 (1996; Zbl 0876.93011)] and in the monograph [R. Mohler, Bilinear control processes, Academic Press, New York (1973; Zbl 0343.93001)].

MSC:
93B05 Controllability
93C10 Nonlinear systems in control theory
93C95 Application models in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] MOHLER, R. R., Bilinear Control Processes, Academic Press, New York, NY, 1973.
[2] MOHLER, R. R., and SHEN, C. N., Optimal Control of Nuclear Reactors, Academic Press, New York, NY, 1972.
[3] MOHLER, R. R., and RUBERTI, A., Editors, Theory and Applications of Variable Structure Systems, Academic Press, New York, NY, 1972.
[4] RUBERTI, A., and MOHLER, R. R., Variable Structure Systems with Applications to Biology and Economics, Springer Verlag, New York, NY, 1975. · Zbl 0299.00041
[5] MOHLER, R., and RUBERTI, A., Recent Developments in Variable Structure Systems, Biology, and Economics, Springer Verlag, New York, NY, 1978. · Zbl 0384.00017
[6] BRUNI, C., DIPILLO, G., and KOCH, G., Bilinear Systems: An Appealing Class of Nearly-Linear Systems in Theory and Applications, IEEE Transactions on Automatic Control, Vol. 19, pp. 334-348, 1974. · Zbl 0285.93015 · doi:10.1109/TAC.1974.1100617
[7] EMELYANOV, S. V., Theory of Variable Structure Systems, Science Press, Moscow, Russia, 1970.
[8] MOHLER, R. R., and RINK, R. E., Control with a Multiplicative Mode, Journal of Dynamics, Measurements, and Control, Vol. 91, pp. 201-206, 1969.
[9] MOHLER, R. R., Nonlinear Systems, Vol. 2: Applications to Bilinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991. · Zbl 0752.93032
[10] BOLTYANSKII, V. G., Sufficient Conditions for Optimality and Justification of the Dynamic Programming Method, SIAM Journal on Control and Optimization, Vol. 4, pp. 326-361, 1966. · Zbl 0143.32004 · doi:10.1137/0304027
[11] ZAKRZEWSKI, R. R., MOHLER, R. R., and KOLODZIEJ, W. J., Hierarchical Intelligent Control with Flexible a.c. Transmission System Application, IFAC Journal of Control Engineering Practice, Vol. 2, pp. 979-987, 1994. · doi:10.1016/0967-0661(94)91620-9
[12] MOHLER, R. R., and ZAKRZEWSKI, R. R., Suboptimal Intelligent Control: Agile Aircraft Application, IEEE Transactions on Automatic Control Systems Technology, Vol. 4, pp. 263-268, 1996.
[13] ASACHENKOV, A., MARCHUK, G. I., MOHLER, R. R., and ZUEV, S., Disease Dynamics, Birkhäuser, Boston, Massachusetts, 1994. · Zbl 0833.92007
[14] VEDAM, R., and MOHLER, R. R., Nonlinear Control Methods for Power Systems: A Comparison, IEEE Transactions on Automatic Control Systems Technology, Vol. 3, pp. 231-237, 1995. · doi:10.1109/87.388132
[15] ELLIOTT, D., Bilinear Systems, John Wiley, New York, NY (to appear).
[16] YAHIUOHI, Y., MOHLER, R., and MPITSOS, G., Bilinear System Model of a Simple Neuron Action Potential, Proceedings of COMCON 7, Athens, Greece, 1999 (to appear).
[17] GUTMANI, P. O., Stabilizing Controllers for Bilinear Systems, IEEE Transactions on Automatic Control, Vol. 26, pp. 917-922, 1981. · Zbl 0552.93046 · doi:10.1109/TAC.1981.1102742
[18] JACOBSEN, D. M., Extensions of Linear-Quadratic Control, Optimization, and Matrix Theory, Academic Press, London, United Kingdom, 1979.
[19] QUINN, J. P., Stabilization of Bilinear Systems by Quadratic Feedback Controls, Journal of Mathematical Analysis and Applications, Vol. 75, pp. 66-80, 1980. · Zbl 0438.93054 · doi:10.1016/0022-247X(80)90306-6
[20] LANDAU, I. D., On the Optimal Regulator Problem and Stabilization of Bilinear Systems, Report, Laboratoire d’Automatique (CNRS), Grenoble, France, 1979.
[21] LONGCHAMP, R. L., Stable Feedback Controls of Bilinear Systems, IEEE Transactions on Automatic Control, Vol. 25, pp. 302-306, 1980. · Zbl 0452.93037 · doi:10.1109/TAC.1980.1102303
[22] BACIOTTI, A., Constant Feedback Stabilizability of Bilinear Systems: Realization and Modeling in System Theory, Edited by M. Kaashoek, J. Van Schuppen, and A. Ran, Birkhäuser, Basel, Switzerland, pp. 357-367, 1990.
[23] KODITSCHEK, D., and NARENDRA, K., Stabilizability of 2nd Order Bilinear Systems, IEEE Transactions on Automatic Control, Vol. 28, p. 987, 1983. · Zbl 0537.93056 · doi:10.1109/TAC.1983.1103153
[24] KARANAM, V., FRICK, P., and MOHLER, R., Bilinear System Identification by Walsh Functions, IEEE Transactions on Automatic Control, Vol. 23, pp. 709-713, 1978. · Zbl 0381.93018 · doi:10.1109/TAC.1978.1101806
[25] KHAPALOV, A., and MOHLER, R., Asymptotic Stabilization of the Bilinear Time-Invariant System via Piecewise-Constant Feedback, System and Control Letters, Vol. 33, pp. 47-54, 1997. · Zbl 0902.93058 · doi:10.1016/S0167-6911(97)00094-7
[26] KHAPALOV, A., and MOHLER, R., Reachable Sets and Controllability of Bilinear Time-Invariant Systems: A Qualitative Approach, IEEE Transactions on Automatic Control, Vol. 41, pp. 1342-1347, 1996. · Zbl 0876.93011 · doi:10.1109/9.536506
[27] RINK, R., and MOHLER, R., Completely Controllable Bilinear Systems, SIAM Journal on Control and Optimization, Vol. 6, pp. 477-486, 1968. · Zbl 0159.13001 · doi:10.1137/0306030
[28] MOHLER, R. R., WANG, Y., ZAKRZEWSKI, R., and RAJKUMAR, V., Variable Structure, Bilinear and Intelligent Control with Power System Application, Systems, Models, and Feedback, Edited by A. Isidori and T. Tarn, Birkhäuser, Basel, Switzerland, pp. 35-46, 1992. · Zbl 0774.93017
[29] MOHLER, R., Nonlinear Systems, Vol. 1: Dynamics and Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991. · Zbl 0752.93032
[30] MOHLER, R., Editor, Advanced Concept Studies Related to FACTS, ECE FACTS Report 9101, Oregon State University, Corvallis, Orgon, 1991.
[31] KUCERA, J., On Accessibility of Bilinear Systems, Czechoslovakian Mathematical Journal, Vol. 20, pp. 160-168, 1970. · Zbl 0205.16603
[32] BROCKETT, R., System Theory on Group Manifold and Coset Spaces, SIAM Journal on Control and Optimization, Vol. 10, pp. 265-284, 1972. · Zbl 0238.93001 · doi:10.1137/0310021
[33] MERMANN, R., and KRENER, A., Nonlinear Controllability and Observability, IEEE Transactions on Automatic Control, Vol. 22, pp. 728-740, 1977. · Zbl 0396.93015 · doi:10.1109/TAC.1977.1101601
[34] HAYNES, G., and HERMES, H., Nonlinear Controllability via Lie Theory, SIAM Journal on Control and Optimization, Vol. 8, pp. 450-460, 1970. · Zbl 0229.93012 · doi:10.1137/0308033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.