×

zbMATH — the first resource for mathematics

On evolution operators in characteristic 2. (English) Zbl 07306351
Summary: We are interested in the evolution operators defined on commutative and non-associative algebras when the characteristic of the scalar field is 2. We distinguish four types: nilpotent, quasi-constant, ultimately periodic, and plenary train operators. They are studied and classified for non-baric and for baric algebras.
MSC:
17D92 Genetic algebras
17A30 Nonassociative algebras satisfying other identities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abraham, V. M., Linearizing quadratic transformations in genetic algebras (1976), University of London: University of London, London, UK
[2] Abraham, V. M., Linearizing quadratic transformations in genetic algebras, Proc. London Math. Soc, s3-40, 2, 346-363 (1980) · Zbl 0388.17007
[3] Benavides Gallardo, R.; Mallol, C. C., Algunas clases de álgebras báricas sobre un cuerpo de característica 2, Proyecciones, 14, 2, 133-138 (1995) · Zbl 1082.17504
[4] Bernstein, S. N., Principe de stationarité and généralisation de la loi de Mendel, C.R. Acad. Sci. Paris, 177, 528-531 (1923) · JFM 49.0368.03
[5] Bernstein, S. N., Démonstration mathématique de la loi d’hérédité de Mendel, C.R. Acad. Sci. Paris, 177, 581-584 (1923) · JFM 49.0368.02
[6] Bernstein, S. N., Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Stat, 13, 1, 53-61 (1942) · Zbl 0063.00333
[7] Etherington, I. M. H., Genetic algebras, Proc. R Soc. Edinb., 59, 242-258 (1940) · JFM 65.1138.05
[8] Etherington, I. M. H., Non-associative algebra and the symbolism of genetics, Proc. Sect. B Biol., 61, 1, 24-42 (1941) · Zbl 0063.01290
[9] Gutiérrez Fernández, C. J., Principal and plenary train algebras, Commun. Algebra, 28, 2, 653-667 (2000) · Zbl 0962.17022
[10] Holgate, P., Genetic algebras satisfying Bernstein’s stationarity principle, J. London Math. Soc, s2-9, 4, 613-623 (1975) · Zbl 0365.92025
[11] Katambe, I., Les algèbres quasi-constantes et de Bernstein (1985), Univ de Montpellier: Univ de Montpellier, Montpellier, France
[12] Katambe, I.; Koulibaly, A.; Micali, A., Les algèbres quasi-constantes, Cahiers Math. Montpellier, 38, 47-64 (1989) · Zbl 0752.17039
[13] Krapivin, A. A., Quasistationary quadratic maps, Vestnik Khar’kov. Univ, 134, 104-108 (1976)
[14] Ljubič Ju, I., Two-level Bernstein populations, Math. USSR. Sb, 24, 4, 593-615 (1974) · Zbl 0334.92019
[15] Ljubič Ju, I., Mathematical Structures in Population Genetics (1992), Berlin, Germany: Springer-Verlag, Berlin, Germany
[16] Mallol, C., A propos des algebras de Bernstein (1989), Université de Montpellier II: Université de Montpellier II, Montpellier, France
[17] Mallol, C.; Micali, A.; Ouattara, M., Sur les algèbres de Bernstein IV, Lin. Alg. Appl, 158, 1-26 (1991) · Zbl 0742.17029
[18] Martin, O.; Odlyzko, A. M.; Wolfram, S., Algebraic properties of cellular automata, Communmath. Phys., 93, 2, 219-258 (1984) · Zbl 0564.68038
[19] Varro, R. (1992), Univ. de Montpellier: Univ. de Montpellier, Montpellier, France
[20] Varro, R.; Gonsalez, S., Non-Associative Algebra and Its Applications, 303, Introduction aux algebras de Bernstein périodiques, 384-388 (1994), Dordrecht, the Netherlands: Kluwer Academic Publishers, Dordrecht, the Netherlands
[21] Tian, J. P., Evolution Algebras and their Applications. Lecture Notes in Mathematics 1921 (2008), Berlin, Germany: Springer, Berlin, Germany
[22] Wörz-Busekros, A., Algebras in Genetics. Lecture Notes in Biomathematics, 36 (1980), Berlin, Germany: Springer-Verlag, Berlin, Germany · Zbl 0431.92017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.