×

zbMATH — the first resource for mathematics

An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. (English) Zbl 07340457
Summary: Presently, it has been widely recognized that numerical integration plays a crucial role on the solution accuracy of Galerkin meshfree methods due to the rational nature of meshfree shape functions and the misalignment of shape function supports with integration cells. Nonetheless, the corresponding underlying cause is still not quite clear. To address this issue, an accuracy analysis of Galerkin meshfree methods is presented in this study with a special focus on the contribution of numerical integration to the error estimates. One important fact is that the integration difficulty of meshfree methods leads to a loss of the Galerkin orthogonality condition which usually serves as a basis to develop error bounds. In order to enable the accuracy analysis, an error measure is proposed to evaluate the loss of Galerkin orthogonality condition, which is actually related to the order of integration consistency for Galerkin meshfree formulation. With the aid of this orthogonality error measure, both \(H^1\) and \(L^2\) error estimates are established for Galerkin meshfree methods. It turns out that these errors essentially consist of two parts, one comes from the standard interpolation error, and the other one attributes to the numerical integration error. In accordance with the proposed error estimates, it is evident that for the conventional Gauss integration schemes violating the integration consistency, the solution errors eventually are controlled by the integration error and optimal convergence cannot be achieved even with high order quadrature rules. On the other hand, for the consistent integration approaches, e.g., the stabilized conforming nodal integration and the more recent reproducing kernel gradient smoothing integration, the integration and interpolation errors have the same accuracy order and thus an optimal convergence of Galerkin meshfree methods is ensured. The proposed theoretical error estimates for Galerkin meshfree methods are well demonstrated by numerical results.
MSC:
65 Numerical analysis
90 Operations research, mathematical programming
Software:
FEAPpv
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belytschko, T.; Kronggauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075
[2] Atluri, S. N.; Shen, S. P., The Meshless Local Petrov-Galerkin (MLPG) Method (2002), Tech Science · Zbl 1012.65116
[3] Babuška, I.; Banerjee, U.; Osborn, J. E., Survey of meshless and generalized finite element methods: a unified approach, Acta Numer., 12, 1-125 (2003) · Zbl 1048.65105
[4] Li, S.; Liu, W. K., Meshfree Particle Methods (2004), Springer-Verlag · Zbl 1073.65002
[5] Zhang, X.; Liu, Y., Meshless Methods (2004), Tsinghua University Press & Springer-Verlag
[6] Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: A review and computer implementation aspects, Math. Comput. Simulation, 79, 763-813 (2008) · Zbl 1152.74055
[7] Liu, G. R., Meshfree Methods: Moving beyond the Finite Element Method (2009), CRC Press
[8] Chen, J. S.; Hillman, M.; Chi, S. W., Meshfree methods: progress made after 20 years, J. Eng. Mech. ASCE, 143, Article 04017001 pp. (2017)
[9] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: Diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[10] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[11] Belytschko, T.; Lu, Y. Y.; Gu, L.; Tabbara, M., Element-free Galerkin methods for static and dynamic fracture, Int. J. Solids Struct., 32, 2547-2570 (1995) · Zbl 0918.73268
[12] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20, 1081-1106 (1995) · Zbl 0881.76072
[13] Chen, J. S.; Pan, C.; Wu, C. T.; Liu, W. K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. Methods Appl. Mech. Engrg., 139, 195-227 (1996) · Zbl 0918.73330
[14] Duarte, C. A.; Oden, J. T., An hp adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139, 237-262 (1996) · Zbl 0918.73328
[15] Babuška, I.; Melenk, J. M., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[16] Sukumar, N.; Moran, B.; Belytschko, T., The natural element method in solid mechanics, Internat. J. Numer. Methods Engrg., 43, 839-887 (1998) · Zbl 0940.74078
[17] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117-127 (1998) · Zbl 0932.76067
[18] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Internat. J. Numer. Methods Engrg., 54, 1623-1648 (2002) · Zbl 1098.74741
[19] Liu, W. K.; Han, W.; Lu, H.; Li, S.; Cao, J., Reproducing kernel element method. Part I: Theoretical formulation, Comput. Methods Appl. Mech. Engrg., 193, 933-951 (2004) · Zbl 1060.74670
[20] Sukumar, N., Construction of polygonal interpolants: a maximum entropy approach, Internat. J. Numer. Methods Engrg., 61, 2159-2181 (2004) · Zbl 1073.65505
[21] Arroyo, M.; Ortiz, M., Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Internat. J. Numer. Methods Engrg., 65, 2167-2202 (2006) · Zbl 1146.74048
[22] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput. Mech., 39, 859-877 (2007) · Zbl 1169.74047
[23] Guan, P. C.; Chi, S. W.; Chen, J. S.; Slawson, T. R.; Roth, M. J., Semi-Lagrangian reproducing kernel particle method for fragment-impact problems, Int. J. Impact Eng., 38, 1033-1047 (2011)
[24] Wang, D.; Chen, P., Quasi-convex reproducing kernel meshfree method, Comput. Mech., 54, 689-709 (2014) · Zbl 1311.65152
[25] Metsis, P.; Lantzounis, N.; Papadrakakis, M., A new hierarchical partition of unity formulation of EFG meshless methods, Comput. Methods Appl. Mech. Engrg., 283, 782-805 (2015) · Zbl 1423.74906
[26] Yreux, E.; Chen, J. S., A quasi-linear reproducing kernel particle method, Internat. J. Numer. Methods Engrg., 109, 1045-1064 (2017)
[27] Wu, Y.; Wu, C. T., Simulation of impact penetration and perforation of metal targets using the smoothed particle Galerkin method, J. Eng. Mech. ASCE, 144, Article 04018057 pp. (2018)
[28] Trask, N.; Bochev, P.; Perego, M., A conservative, consistent, and scalable meshfree mimetic method, J. Comput. Phys., 409, Article 109187 pp. (2020) · Zbl 1435.65221
[29] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comp., 37, 141-158 (1981) · Zbl 0469.41005
[30] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech., 23, 219-230 (1999) · Zbl 0963.74076
[31] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput. Methods Appl. Mech. Engrg., 139, 49-74 (1996) · Zbl 0918.73329
[32] Dyka, C. T.; Randles, P. W.; Ingel, R. P., Stress points for tension instability in SPH, Internat. J. Numer. Methods Engrg., 40, 2325-2341 (1997) · Zbl 0890.73077
[33] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on Lagrangian kernels, Comput. Methods Appl. Mech. Engrg., 193, 1035-1063 (2004) · Zbl 1060.74672
[34] Wu, C. T.; Wu, Y.; Liu, Z.; Wang, D., A stable and convergent Lagrangian particle method with multiple local stress points for large strain and material failure analysis, Finite Elem. Anal. Des., 146, 96-106 (2018)
[35] Hillman, M.; Chen, J. S., An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics, Internat. J. Numer. Methods Engrg., 107, 603-630 (2016) · Zbl 1352.74119
[36] Silva-Valenzuela, R.; Ortiz-Bernardin, A.; Sukumar, N.; Artioli, E.; Hitschfeld-Kahler, N., A nodal integration scheme for meshfree Galerkin methods using the virtual element decomposition, Internat. J. Numer. Methods Engrg., 121, 2174-2205 (2020)
[37] De, S.; Bathe, K. J., The method of finite spheres with improved numerical integration, Comput. Struct., 79, 2183-2196 (2001)
[38] Carpinteri, A.; Ferro, G.; Ventura, G., The partition of unity quadrature in meshless methods, Internat. J. Numer. Methods Engrg., 54, 987-1006 (2002) · Zbl 1028.74047
[39] Liu, Y.; Belytschko, T., A new support integration scheme for the weakform in mesh-free methods, Internat. J. Numer. Methods Engrg., 82, 699-715 (2010) · Zbl 1188.74084
[40] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 50, 435-466 (2001) · Zbl 1011.74081
[41] Chen, J. S.; Yoon, S.; Wu, C. T., Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 53, 2587-2615 (2002) · Zbl 1098.74732
[42] Irons, B. M.; Razzaque, A., Experience with the patch test for convergence of finite element methods, (Aziz, A. K., Mathematical Foundations of the Finite Element Method (1972), Academic Press: Academic Press London), 557-587
[43] Zienkiewicz, O. C.; Taylor, R. L., The finite element patch test revisited a computer test for convergence, validation and error estimates, Comput. Methods Appl. Mech. Eng., 149, 223-254 (1997) · Zbl 0918.73134
[44] Wang, D.; Chen, J. S., Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation, Comput. Methods Appl. Mech. Eng., 193, 1065-1083 (2004) · Zbl 1060.74675
[45] Chen, J. S.; Wang, D., A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates, Internat. J. Numer. Methods Engrg., 68, 151-172 (2006) · Zbl 1130.74055
[46] Wang, D.; Chen, J. S., A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration, Internat. J. Numer. Methods Engrg., 74, 368-390 (2008) · Zbl 1159.74460
[47] Wang, D.; Wu, Y., An efficient Galerkin meshfree analysis of shear deformable cylindrical panels, Interact. Multiscale Mech., 1, 339-355 (2008)
[48] Wang, D.; Lin, Z., Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures, Comput. Mech., 48, 47-63 (2011) · Zbl 1398.74478
[49] Wang, D.; Peng, H., A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates, Comput. Mech., 51, 1013-1029 (2013) · Zbl 1366.74023
[50] Wang, D.; Song, C.; Peng, H., A circumferentially enhanced Hermite reproducing kernel meshfree method for buckling analysis of Kirchhoff-Love cylindrical shells, Int. J. Struct. Stab. Dyn., 15, Article 1450090 pp. (2015) · Zbl 1359.74446
[51] Wang, D.; Li, Z.; Li, L.; Wu, Y., Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium, Sci. China Tech. Sci., 54, 573-580 (2011) · Zbl 1419.74264
[52] Wu, Y.; Wang, D.; Wu, C. T., Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method, Theor. Appl. Fract. Mech., 72, 89-99 (2014)
[53] Wu, Y.; Wang, D.; Wu, C. T.; Zhang, H., A direct displacement smoothing meshfree particle formulation for impact failure modeling, Int. J. Impact Eng., 87, 169-185 (2016)
[54] Wang, D.; Wang, J.; Wu, J.; Deng, J.; Sun, M., A three dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations, Front. Struct. Civ. Eng., 13, 337-352 (2019)
[55] Pan, X. F.; Wu, C. T.; Hu, W.; Wu, Y., A momentum-consistent stabilization algorithm for Lagrangian particle methods in the thermo-mechanical friction drilling analysis, Comput. Mech., 64, 625-644 (2019) · Zbl 07099894
[56] Huang, T. H.; Chen, J. S.; Wei, H.; Roth, M.; Fang, E. H., A MUSCL-SCNI approach for meshfree modeling of shock waves in fluids, Comput. Part. Mech., 7, 329-350 (2020)
[57] Duan, Q.; Li, X.; Zhang, H.; Belytschko, T., Second-order accurate derivatives and integration schemes for meshfree methods, Internat. J. Numer. Methods Engrg., 92, 399-424 (2012) · Zbl 1352.65390
[58] Duan, Q.; Gao, X.; Wang, B.; Li, X.; Zhang, H.; Belytschko, T.; Shao, Y., Consistent element-free Galerkin method, Internat. J. Numer. Methods Engrg., 99, 79-101 (2014) · Zbl 1352.65493
[59] Wang, B.; Lu, C.; Fan, C.; Zhao, M., Consistent integration schemes for meshfree analysis of strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 357, Article 112601 pp. (2019) · Zbl 1442.65026
[60] Chen, J. S.; Hillman, M.; Rüter, M., An arbitrary order variationally consistent integration for Galerkin meshfree methods, Internat. J. Numer. Methods Engrg., 95, 387-418 (2013) · Zbl 1352.65481
[61] Hillman, M.; Chen, J. S.; Chi, S. W., Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems, Comput. Part. Mech., 1, 245-256 (2014)
[62] Wang, D.; Wu, J., An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods, Comput. Methods Appl. Mech. Engrg., 298, 485-519 (2016) · Zbl 1425.65182
[63] Wang, D.; Wu, J., An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature, Comput. Methods Appl. Mech. Engrg., 349, 628-672 (2019) · Zbl 1441.74278
[64] Wu, J.; Wang, D.; Lin, Z.; Qi, D., An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture, Comput. Part. Mech., 7, 193-207 (2020)
[65] Strang, G., Variational crimes in finite element method, (Aziz, A. K., The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (1972), Academic Press), 689-710
[66] Strang, G.; Fix, G., An Analysis of the Finite Element Method (2018), Wellesley-Cambridge Press · Zbl 0278.65116
[67] Liu, W. K.; Chen, Y.; Chang, C. T.; Belytschko, T., Advances in multiple scale kernel particle methods, Comput. Mech., 18, 73-111 (1996) · Zbl 0868.73091
[68] Liu, W. K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I) methodology and convergence, Comput. Methods Appl. Mech. Engrg., 143, 113-154 (1997) · Zbl 0883.65088
[69] Chen, J. S.; Han, W.; You, Y.; Meng, X., A reproducing kernel method with nodal interpolation property, Internat. J. Numer. Methods Engrg., 56, 935-960 (2003) · Zbl 1106.74424
[70] Han, W.; Meng, X., Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Mech. Engrg., 190, 6157-6181 (2001) · Zbl 0992.65119
[71] Babuška, I.; Banerjee, U.; Osborn, J. E.; Li, Q., Quadrature for meshless methods, Internat. J. Numer. Methods Engrg., 76, 1434-1470 (2008) · Zbl 1195.65165
[72] Rüter, M.; Chen, J. S., An enhanced-strain error estimator for Galerkin meshfree methods based on stabilized conforming nodal integration, Comput. Math. Appl., 74, 2144-2171 (2017) · Zbl 1397.65294
[73] Fernández-Méndez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Engrg., 193, 1257-1275 (2004) · Zbl 1060.74665
[74] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1994), Springer · Zbl 0803.65088
[75] Burden, R. L.; Faires, J. D., Numerical Analysis (2010), Brooks Cole
[76] Davis, P. J.; Rabinowitz, P., Methods of Numerical Integration (2007), Courier Corporation · Zbl 1139.65016
[77] Philippe, G., Linear and Nonlinear Functional Analysis with Applications (2013), SIAM-Society for Industrial and Applied Mathematics
[78] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications · Zbl 1191.74002
[79] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z., The Finite Element Method: Its Basis and Fundamentals (2015), Elsevier: Elsevier Singapore · Zbl 1307.74005
[80] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1970), McGraw-Hill · Zbl 0266.73008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.