×

zbMATH — the first resource for mathematics

Deep material network with cohesive layers: multi-stage training and interfacial failure analysis. (English) Zbl 1436.74015
Summary: A fundamental issue in multiscale materials modeling and design is the consideration of traction-separation behavior at the interface. By enriching the deep material network (DMN) with cohesive layers, the paper presents a novel data-driven material model which enables accurate and efficient prediction of multiscale responses for heterogeneous materials with interfacial effect. In the newly invoked cohesive building block, the fitting parameters have physical meanings related to the length scale and orientation of the cohesive layer. It is shown that the enriched material network can be effectively optimized via a multi-stage training strategy, with training data generated only from linear elastic direct numerical simulation (DNS). The extrapolation capability of the method to unknown material and loading spaces is demonstrated through the debonding analysis of a unidirectional fiber-reinforced composite, where the interface behavior is governed by an irreversible softening mixed-mode cohesive law. Its predictive accuracy is validated against the nonlinear path-dependent DNS results, and the reduction in computational time is particularly significant.

MSC:
74E30 Composite and mixture properties
74A50 Structured surfaces and interfaces, coexistent phases
74S99 Numerical and other methods in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Melro, A.; Camanho, P.; Pires, F. A.; Pinho, S., Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II-micromechanical analyses, Int. J. Solids Struct., 50, 11-12, 1906-1915 (2013)
[2] Cantournet, S.; Desmorat, R.; Besson, J., Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model, Int. J. Solids Struct., 46, 11-12, 2255-2264 (2009) · Zbl 1217.74018
[3] Vernerey, F. J.; McVeigh, C.; Liu, W. K.; Moran, B.; Tewari, D.; Parks, D. M.; Olson, G. B., The 3-D computational modeling of shear-dominated ductile failure in steel, JOM, 58, 12, 45-51 (2006)
[4] McVeigh, C.; Vernerey, F.; Liu, W. K.; Moran, B.; Olson, G., An interactive micro-void shear localization mechanism in high strength steels, J. Mech. Phys. Solids, 55, 2, 225-244 (2007)
[5] Simone, A.; Duarte, C. A.; Van der Giessen, E., A generalized finite element method for polycrystals with discontinuous grain boundaries, Internat. J. Numer. Methods Engrg., 67, 8, 1122-1145 (2006) · Zbl 1113.74076
[6] Espinosa, H. D.; Zavattieri, P. D., A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation, Mech. Mater., 35, 3-6, 333-364 (2003)
[7] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 3, 525-531 (1987) · Zbl 0626.73010
[8] Duan, H.; Wang, J.-x.; Huang, Z.; Karihaloo, B. L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids, 53, 7, 1574-1596 (2005) · Zbl 1120.74718
[9] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 241, 1226, 376-396 (1957) · Zbl 0079.39606
[10] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 5, 571-574 (1973)
[11] Hill, R., A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, 4, 213-222 (1965)
[12] Qu, J., The effect of slightly weakened interfaces on the overall elastic properties of composite materials, Mech. Mater., 14, 4, 269-281 (1993)
[13] Tan, H.; Huang, Y.; Liu, C.; Geubelle, P. H., The Mori-Tanaka method for composite materials with nonlinear interface debonding, Int. J. Plast., 21, 10, 1890-1918 (2005) · Zbl 1154.74318
[14] Geers, M. G.; Kouznetsova, V. G.; Brekelmans, W., Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math., 234, 7, 2175-2182 (2010) · Zbl 1402.74107
[15] Park, K.; Paulino, G. H., Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces, Appl. Mech. Rev., 64, 6, Article 060802 pp. (2011)
[16] Camacho, G. T.; Ortiz, M., Computational modelling of impact damage in brittle materials, Int. J. Solids Struct., 33, 20-22, 2899-2938 (1996) · Zbl 0929.74101
[17] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Internat. J. Numer. Methods Engrg., 44, 9, 1267-1282 (1999) · Zbl 0932.74067
[18] Hettich, T.; Ramm, E., Interface material failure modeled by the extended finite-element method and level sets, Comput. Methods Appl. Mech. Engrg., 195, 37-40, 4753-4767 (2006) · Zbl 1154.74386
[19] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Modelling Simulation Mater. Sci. Eng., 17, 4, Article 043001 pp. (2009)
[20] Deng, X.; Korobenko, A.; Yan, J.; Bazilevs, Y., Isogeometric analysis of continuum damage in rotation-free composite shells, Comput. Methods Appl. Mech. Engrg., 284, 349-372 (2015) · Zbl 1423.74569
[21] Bazilevs, Y.; Pigazzini, M.; Ellison, A.; Kim, H., A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: basic theory and modeling of delamination and transverse shear, Comput. Mech., 62, 3, 563-585 (2018) · Zbl 1446.74163
[22] Zhao, J.; Kontsevoi, O. Y.; Xiong, W.; Smith, J., Simulation-aided constitutive law development-Assessment of low triaxiality void nucleation models via extended finite element method, J. Mech. Phys. Solids, 102, 30-45 (2017)
[23] Liu, Z.; Fleming, M.; Liu, W. K., Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials, Comput. Methods Appl. Mech. Engrg., 330, 547-577 (2018)
[24] Liu, Z.; Wu, C.; Koishi, M., Transfer learning of deep material network for seamless structure-property predictions, Comput. Mech., 64, 2, 451-465 (2019) · Zbl 07095675
[25] Ghosh, S.; Ling, Y.; Majumdar, B.; Kim, R., Interfacial debonding analysis in multiple fiber reinforced composites, Mech. Mater., 32, 10, 561-591 (2000)
[26] Ghosh, S.; Bai, J.; Raghavan, P., Concurrent multi-level model for damage evolution in microstructurally debonding composites, Mech. Mater., 39, 3, 241-266 (2007)
[27] Oskay, C.; Fish, J., Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 196, 7, 1216-1243 (2007) · Zbl 1173.74380
[28] Yuan, Z.; Fish, J., Multiple scale eigendeformation-based reduced order homogenization, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 2016-2038 (2009) · Zbl 1227.74051
[29] Zhang, X.; Oskay, C., Eigenstrain based reduced order homogenization for polycrystalline materials, Comput. Methods Appl. Mech. Engrg., 297, 408-436 (2015) · Zbl 1423.74796
[30] Liu, Z.; Bessa, M.; Liu, W. K., Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 306, 319-341 (2016)
[31] Liu, Z.; Kafka, O. L.; Yu, C.; Liu, W. K., Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity, (Advances in Computational Plasticity (2018), Springer), 221-242
[32] Shakoor, M.; Gao, J.; Liu, Z.; Liu, W. K., A data-driven multiscale theory for modeling damage and fracture of composite materials, (International Workshop on Meshfree Methods for Partial Differential Equations (2017), Springer), 135-148 · Zbl 1428.74229
[33] Li, H.; Kafka, O. L.; Gao, J.; Yu, C.; Nie, Y.; Zhang, L.; Tajdari, M.; Tang, S.; Guo, X.; Li, G., Clustering discretization methods for generation of material performance databases in machine learning and design optimization, Comput. Mech., 64, 2, 281-305 (2019) · Zbl 07095665
[34] Oliver, J.; Caicedo, M.; Huespe, A.; Hernández, J.; Roubin, E., Reduced order modeling strategies for computational multiscale fracture, Comput. Methods Appl. Mech. Engrg., 313, 560-595 (2017)
[35] Ghaboussi, J.; Garrett, J.; Wu, X., Knowledge-based modeling of material behavior with neural networks, J. Eng. Mech., 117, 1, 132-153 (1991)
[36] Le, B.; Yvonnet, J.; He, Q.-C., Computational homogenization of nonlinear elastic materials using neural networks, Internat. J. Numer. Methods Engrg., 104, 12, 1061-1084 (2015) · Zbl 1352.74266
[37] Bessa, M.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, D.; Brinson, C.; Chen, W.; Liu, W., A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Engrg., 320, 633-667 (2017)
[38] Wang, K.; Sun, W., A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning, Comput. Methods Appl. Mech. Engrg., 334, 337-380 (2018)
[39] Wang, K.; Sun, W., Meta-modeling game for deriving theory-consistent, microstructure-based traction-separation laws via deep reinforcement learning, Comput. Methods Appl. Mech. Engrg., 346, 216-241 (2019)
[40] Liu, Z.; Wu, C.; Koishi, M., A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials, Comput. Methods Appl. Mech. Eng., 345, 1138-1168 (2019)
[41] Liu, Z.; Wu, C., Exploring the 3D architectures of deep material network in data-driven multiscale mechanics, J. Mech. Phys. Solids, 127, 20-46 (2019)
[42] Banerjee, R.; Sagiyama, K.; Teichert, G.; Garikipati, K., A graph theoretic framework for representation, exploration and analysis on computed states of physical systems, Comput. Methods Appl. Mech. Engrg., 351, 501-530 (2019)
[43] Gao, Y.; Bower, A., A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces, Modelling Simulation Mater. Sci. Eng., 12, 3, 453 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.