×

zbMATH — the first resource for mathematics

A PMGOP method of parameter identification for a class of continuous nonlinear systems. (English) Zbl 0827.93017
Summary: A series of piecewise multiple general orthogonal polynomials (PMGOPs) is introduced and applied to the parameter identification problem for a class of continuous nonlinear systems. An effective procedure for the parameter identification of a large class of continuous systems, called parameter separable systems, is proposed. The procedure given in the paper has the following advantages compared with other methods: the identification algorithm (IA) obtained is computationally fast and accurate; the IA can be implemented in a recursive fashion; the IA is effective for a small number of data points; the IA does not require a priori knowledge of the estimated parameters; the IA is tolerant to choices of expanding orders when PMGOPs are applied.
MSC:
93B30 System identification
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
93C10 Nonlinear systems in control theory
93B40 Computational methods in systems theory (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/00207729008910397 · Zbl 0698.93014 · doi:10.1080/00207729008910397
[2] Gu X. S., ACTA Automatica Sinica 16 pp 400– (1990)
[3] Hu Y. Z., Journal of East China University of Chemical Technology 16 pp 459– (1990)
[4] HWANG G. Z., Studies on the kinetics of L-lysine fermentation (1982)
[5] DOI: 10.1109/TAC.1978.1101806 · Zbl 0381.93018 · doi:10.1109/TAC.1978.1101806
[6] DOI: 10.1080/00207178608933454 · Zbl 0584.93033 · doi:10.1080/00207178608933454
[7] DOI: 10.1080/00207728908910230 · Zbl 0683.93018 · doi:10.1080/00207728908910230
[8] LEWIS F. L., IEEE Transactions on Industrial Electronics 35 pp 1140– (1990)
[9] DOI: 10.1109/41.31505 · doi:10.1109/41.31505
[10] DOI: 10.1007/BFb0041228 · doi:10.1007/BFb0041228
[11] DOI: 10.1016/0005-1098(88)90094-5 · Zbl 0647.49023 · doi:10.1016/0005-1098(88)90094-5
[12] VLASSENBROECK J., IEEE Transactions on Industrial Electronics 33 pp 333– (1988)
[13] Xu L. Z., Approximation theory (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.