×

zbMATH — the first resource for mathematics

Guest editorial: Special issue in honor of Scott A. Vanstone. (English) Zbl 1323.00055
From the text: This volume of Designs, Codes and Cryptography is a recognition of Scott’s contributions and influence in the areas of cryptography, coding theory, combinatorial design theory, and finite fields. He was among the first to recognize the significance and potential of the discrete logarithm problem on elliptic curves, an area that generated enormous interest over the past few decades.
MSC:
00B15 Collections of articles of miscellaneous specific interest
94-06 Proceedings, conferences, collections, etc. pertaining to information and communication theory
05-06 Proceedings, conferences, collections, etc. pertaining to combinatorics
Biographic References:
Vanstone, Scott A.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mullin R., Vanstone S.: An approximation of BIBDs by regular pairwise balanced designs; Case \(λ \ge 2\). In: Proceedings of the Third Conference on Numerical Mathematics. University of Manitoba, Winnipeg, pp. 61-72 (1973).
[2] Mullin R., Vanstone S.: On the size of \((r,2)\)-designs. In: Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, pp. 445-457 (1973). · Zbl 0317.05016
[3] Vanstone S.: The extendability of \((r,1)-\)designs. In: Proceedings of the Third Conference on Numerical Mathematics. University of Manitoba, Winnipeg, pp. 409-418 (1973).
[4] Mullin R., Vanstone S.: A bound for \(v_0 (r,λ )\). In: Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, pp. 661-673 (1974).
[5] Vanstone S.: Geometries and designs. Utilitas Math. 6, 337-341 (1974).
[6] McCarthy D., Mullin R., Schellenberg P., Stanton R., Vanstone S.: On the non-existence of (7,1)-designs with \(v=31, b \le 43\). In: Proceedings of the Fifth Conference on Numerical Mathematics. University of Manitoba, Winnipeg, pp. 479-495 (1975). · Zbl 0367.05013
[7] Mullin R., Vanstone S.: On regular pairwise balanced designs of order 6 and index 1. Utilitas Math. 8, 349-369 (1975). · Zbl 0334.05017
[8] Vanstone S.: A note on a construction of BIBDs. Utilitas Math. 7, 321-322 (1975). · Zbl 0307.05012
[9] Vanstone S.: The non-existence of (7,1)-designs with \(v=31, b \ge 50\). In: Proceedings of the Fifth Conference on Numerical Mathematics. University of Manitoba, Winnipeg, pp. 497-532 (1975).
[10] Deza M., Mullin R., Vanstone S.: Room squares and equidistant permutation arrays. Ars Comb. 2, 235-244 (1976). · Zbl 0351.05017
[11] Hoffman F., Schellenberg P., Vanstone S.: A starter-adder approach to equidistant permutation arrays and generalized Room squares. Ars Comb. 1, 307-319 (1976). · Zbl 0343.05014
[12] McCarthy D., Mullin R., Schellenberg P., Stanton R., Vanstone S.: On approximations to a finite projective plane of order 6. Ars Comb. 2, 111-168 (1976). · Zbl 0352.05019
[13] McCarthy D., Stanton R., Vanstone S.: On an extremal class of \((r,λ )\)-designs related to a problem of Doehlert and Klee. Ars Comb. 2, 305-317 (1976). · Zbl 0355.05006
[14] Mullin R., Vanstone S.: A generalization of a theorem of Totten. J. Aust. Math. Soc. Ser. A 22, 494-500 (1976). · Zbl 0343.05016
[15] Mullin R., Vanstone S.: On the non-existence of a certain design. Utilitas Math. 9, 193-207 (1976). · Zbl 0333.05005
[16] Schellenberg P., Vanstone S.: Some results on equidistant permutation arrays of index 1. In: Proceedings of the Sixth Conference on Numerical Mathematics, University of Manitoba, Winnipeg, pp. 389-410 (1976).
[17] Vanstone S.: Towards the uniqueness of a (7,1)-design on 31 varieties. In: Proceedings of the Sixth Conference on Numerical Mathematics, University of Manitoba, Winnipeg, pp. 265-285 (1976).
[18] McCarthy D., Vanstone S.: Embedding \((r,1)\)-designs in finite projective planes. Discret. Math. 19, 67-76 (1977). · Zbl 0374.05013
[19] McCarthy D., Vanstone S.: On \((r,λ )\)-designs and finite projective planes. Utilitas Math. 11, 57-74 (1977). · Zbl 0346.05007
[20] Mullin R., Singhi N., Vanstone S.: Embedding the affine complement of three intersecting lines in a finite projective plane. J. Aust. Math. Soc. Ser. A 24, 458-464 (1977). · Zbl 0375.05015
[21] Schellenberg P., van Rees G., Vanstone S.: The existence of balanced tournament designs. Ars Comb. 3, 303-318 (1977). · Zbl 0401.05029
[22] Schellenberg P., Vanstone S.: Recursive constructions for equidistant permutation arrays. J. Aust. Math. Soc. Ser. A 24, 216-223 (1977). · Zbl 0367.05021
[23] Schellenberg P., Vanstone S.: A construction for BIBDs based on an intersection property. Utilitas Math. 11, 313-324 (1977). · Zbl 0353.05010
[24] Stanton R., Vanstone S.: Some lower bounds on the size of Doehlert-Klee designs. Ars Comb. 4, 123-132 (1977). · Zbl 0394.05006
[25] Stanton R., Vanstone S.: Further results on a problem of Doehlert and Klee. Utilitas Math. 12, 263-271 (1977).
[26] Vanstone S., Schellenberg P.: A construction for equidistant permutation arrays of index one. J. Comb. Theory Ser. A 23, 180-186 (1977). · Zbl 0361.05026
[27] Deza M., Mullin R., Vanstone S.: Orthogonal systems. Aequationes Math. 17, 322-330 (1978). · Zbl 0377.05012
[28] Deza M., Vanstone S.: Bounds for permutation arrays. J. Stat. Plann. Inference 2, 197-209 (1978). · Zbl 0384.05026
[29] Schellenberg P., van Rees G., Vanstone S.: Four pairwise orthogonal Latin squares of side 15. Ars Comb. 6, 141-150 (1978). · Zbl 0433.05014
[30] Vanstone S.: Extremal \((r,λ )\)-designs. Discret. Math. 23, 57-66 (1978). · Zbl 0389.05024
[31] Vanstone S.: Pairwise Orthogonal generalized room squares and equidistant permutation arrays. J. Comb. Theory Ser. A 25, 84-89 (1978). · Zbl 0395.05014
[32] McCarthy D., Singhi N., Vanstone S.: A graph theoretical approach to embedding \((r,1)\)-designs. In: Topics in Graph Theory, pp. 289-304. Academic Press, London (1979). · Zbl 0459.05016
[33] McCarthy D., Vanstone S.: On the structure of regular pairwise balanced designs. Discret. Math. 25, 237-244 (1979). · Zbl 0403.05013
[34] Mullin R., Vanstone S.: Embedding the pseudocomplement of a quadrilateral in a finite projective plans. Ann. N. Y. Acad. Sci. 319, 405-413 (1979). · Zbl 0482.51006
[35] Stanton R., Vanstone S.: Some theorems on \(DK\)-designs. Ars Comb. 8, 117-130 (1979). · Zbl 0446.05015
[36] Vanstone S.: A note on a class of maximal equidistant permutation arrays. Utilitas Math. 16, 217-221 (1979). · Zbl 0447.05022
[37] Vanstone S.: Resolvable \((r,λ )\)-designs and the Fisher inequality. J. Aust. Math. Soc. Ser. A 28, 471-478 (1979). · Zbl 0421.05015
[38] Vanstone S.: The asymptotic behaviour of equidistant permutation arrays. Can. J. Math. 31, 45-48 (1979). · Zbl 0367.05014
[39] Vanstone S.: Irreducible regular pairwise balanced designs. Utilitas Math. 15, 249-259 (1979). · Zbl 0396.05002
[40] Deza M., Vanstone S.: Some maximal equidistant permutation arrays. J. Korean Math. Soc. 17, 45-51 (1980). · Zbl 0458.05018
[41] Fuji-Hara R., Vanstone S.: Transversal designs and doubly-resolvable designs. Eur. J. Comb. 1, 219-223 (1980). · Zbl 0458.05015
[42] Fuji-Hara R., Vanstone S.: On the spectrum of doubly resolvable Kirkman systems. Congr. Numer. 28, 399-407 (1980). · Zbl 0456.05020
[43] Fuji-Hara R., Vanstone, S.: On automorphisms of doubly resolvable designs. Lecture Notes in Mathematics, vol. 829, pp. 29-36 (1980). · Zbl 0458.05014
[44] Gardner B., Vanstone S.: Some results on irreducible \((r, λ )\)-designs. Utilitas Math. 18, 291-300 (1980). · Zbl 0454.05016
[45] Mathon R., Vanstone S.: On the existence of doubly resolvable Kirkman systems and equidistant permutation arrays. Discret. Math. 30, 157-172 (1980). · Zbl 0447.05021
[46] Mathon R., Vanstone S.: Doubly resolvable Kirkman systems. Congr. Numer. 29, 611-625 (1980). · Zbl 0459.05021
[47] Mullin R., Schellenberg P., van Rees G., Vanstone S.: On the construction of perpendicular arrays. Utilitas Math. 18, 141-160 (1980). · Zbl 0457.05009
[48] Mullin R., Schellenberg P., Stinson D., Vanstone S.: Some results on the existence of squares. Ann. Discret. Math. 6, 257-274 (1980). · Zbl 0447.05013
[49] Mullin R., Vanstone S.: Steiner systems and Room squares. Ann. Discret. Math. 7, 95-104 (1980). · Zbl 0461.05012
[50] Schellenberg P., Vanstone S.: The existence of Howell designs of side \(2n\) and order \(2n+2\). Congr. Numer. 29, 879-887 (1980).
[51] Vanstone S.: Doubly resolvable designs. Discret. Math. 29, 77-86 (1980). · Zbl 0447.05010
[52] Colbourn C., Vanstone S.: Doubly resolvable twofold triple systems. In: Proceedings of the Eleventh Conference on Numerical Mathematics, University of Manitoba, Winnipeg, pp. 219-223 (1981). · Zbl 0554.05009
[53] Deza M., Mullin R., Vanstone S.: Recent results on \((r,λ )\)-designs and some related areas. Int. J. Math. Stat. 4, 140-158 (1981). · Zbl 0481.05009
[54] Fuji-Hara R., Vanstone S.: Recursive constructions for skew resolutions in affine geometries. Aequationes Math. 23, 242-251 (1981). · Zbl 0511.05023
[55] Fuji-Hara R., Vanstone S.: Equidistant permutation arrays from finite geometries. Congr. Numer. 32, 333-345 (1981). · Zbl 0489.05016
[56] Fuji-Hara R., Vanstone S.: Mutually orthogonal resolutions from finite geometries. Ars Comb. 12, 189-207 (1981). · Zbl 0482.05022
[57] Mullin R., Schellenberg P., Vanstone S., Wallis W.: On the existence of frames. Discret. Math. 37, 79-104 (1981). · Zbl 0465.05015
[58] Schellenberg P., Stinson D., Vanstone S., Yates J.: The existence of Howell designs of side \(n+1\) and order \(2n\). Combinatorica 1, 289-301 (1981). · Zbl 0491.05015
[59] Deza M., Vanstone S.: On maximal equidistant permutation arrays. Ann. Discret. Math. 12, 87-94 (1982). · Zbl 0492.05017
[60] Fuji-Hara R., Vanstone S.: Orthogonal resolutions of lines in \(AG(n, q)\). Discret. Math. 41, 17-28 (1982). · Zbl 0509.05013
[61] Mullin R., Stinson D., Vanstone S.: Kirkman triple systems containing maximum subdesigns. Utilitas Math. 21C, 283-300 (1982). · Zbl 0498.05013
[62] van Rees G., Vanstone S.: Equidistant permutation arrays: a bound. J. Aust. Math. Soc. Ser. A 33, 262-274 (1982). · Zbl 0492.05016
[63] Vanstone S.: On mutually orthogonal resolutions and near-resolutions. Ann. Discret. Math. 15, 357-369 (1982). · Zbl 0512.05007
[64] Vanstone S., Rosa A.: Starter-adder techniques for Kirkman squares and Kirkman cubes of small sides. Ars Comb. 14, 199-212 (1982). · Zbl 0506.05013
[65] Fuji-Hara R., Vanstone S.: Affine geometries obtained from projective geometries and skew resolutions. Ann. Discret. Math. 18, 355-376 (1983). · Zbl 0504.05014
[66] Goulden I., Vanstone S.: The number of solutions to an equation arising from a problem on Latin squares. J. Aust. Math. Soc. Ser. A 34, 138-142 (1983). · Zbl 0509.05021
[67] Rosa A., Vanstone S.: Kirkman cubes. Ann. Discret. Math. 18, 699-712 (1983). · Zbl 0545.05019
[68] Vanstone S.: A note on the existence of strong Kirkman cubes. Ann. Discret. Math. 17, 629-632 (1983). · Zbl 0521.05015
[69] Vanstone S.: Some results on strong skew resolutions. Matematiche (Catania) 38, 173-180 (1983).
[70] Blake I., Fuji-Hara R., Mullin R., Vanstone S.: Computing logarithms in finite fields of characteristic two. SIAM J. Algebraic Discret. Methods 5, 276-285 (1984). · Zbl 0536.12010
[71] Fuji-Hara R., Vanstone S.: On a line partitioning problem for \(PG(2k, q)\). Rendiconti del Seminario Matemàtico di Brescia 7, 337-341 (1984). · Zbl 0545.51009
[72] Jackson D., Vanstone S. (eds.): Enumeration and Design. Academic Press, London (1984).
[73] Jimbo M., Vanstone S.: Recursive constructions for resolvable and doubly resolvable 1-rotational Steiner 2-designs. Utilitas Math. 26, 45-61 (1984). · Zbl 0558.05009
[74] Lamken E., Vanstone S.: Complementary Howell designs of side \(2n\) and order \(2n+2\). Congr. Numer. 41, 83-113 (1984). · Zbl 0717.05014
[75] Mullin R., Vanstone S.: Asymptotic properties of locally extensible designs. Geom. Dedicata 15, 269-277 (1984). · Zbl 0532.05008
[76] Stinson D., Vanstone S.: A note on non-isomorphic Kirkman triple systems. J. Comb. Inf. Syst. Sci. 9, 113-116 (1984). · Zbl 0631.05007
[77] Blake I., Mullin R., Vanstone S.: Computing logarithms in \(GF(2^n)\). In: Advances in Cryptology—CRYPTO ’85. Lecture Notes in Computer Science, vol. 196, pp. 73-82 (1985).
[78] Gionfriddo M., Vanstone S.: On \(L_2\)-colourings of a graph. J. Inf. Optim. Sci. 6, 243-246 (1985). · Zbl 0609.05036
[79] Kocay W., Stinson D., Vanstone S.: On strong starters in cyclic groups. Discret. Math. 56, 45-60 (1985). · Zbl 0578.20014
[80] Lamken E., Mullin R., Vanstone S.: Some non-existence results on twisted planes related to minimum covers. Congr. Numer. 48, 265-275 (1985). · Zbl 0622.05014
[81] Lamken E., Vanstone S.: The existence of factored balanced tournament designs. Ars Comb. 19, 157-160 (1985). · Zbl 0583.05021
[82] Lamken E., Vanstone S.: The existence of \(KS_k(v; μ , λ )\): I. The main constructions. Utilitas Math. 27, 111-130 (1985). · Zbl 0584.05013
[83] Lamken E., Vanstone S.: The existence of \(KS_k(v; μ , λ )\): II. Special constructions. Utilitas Math. 27, 131-155 (1985). · Zbl 0584.05014
[84] Lamken E., Vanstone S.: The existence of partitioned balanced tournament designs of side \(4n+1\). Ars Comb. 20, 29-44 (1985). · Zbl 0601.05012
[85] Rosa A., Vanstone S.: On the existence of strong Kirkman cubes of order 39 and block size 3. Ann. Discret. Math. 26, 309-319 (1985). · Zbl 0582.05010
[86] Stinson D., Vanstone S.: A Kirkman square of order 51 and block size 3. Discret. Math. 55, 107-111 (1985). · Zbl 0563.05017
[87] Stinson D., Vanstone S.: A few more balanced Room squares. J. Aust. Math. Soc. Ser. A 39, 344-352 (1985). · Zbl 0591.05011
[88] Stinson D., Vanstone S.: Some non-isomorphic Kirkman triple systems of order 39 and 51. Utilitas Math. 27, 199-205 (1985). · Zbl 0582.05009
[89] Jungnickel D., Vanstone S.: On resolvable designs \(S_3(3; 4, v)\). J. Comb. Theory Ser. A 43, 334-337 (1986). · Zbl 0648.05007
[90] Lamken E., Vanstone S.: Designs with mutually orthogonal resolutions. Eur. J. Comb. 7, 249-257 (1986). · Zbl 0618.05009
[91] Lamken E., Vanstone S.: Elliptic semiplanes and group divisible designs with orthogonal resolutions. Aequationes Math. 30, 80-92 (1986). · Zbl 0586.05006
[92] Lamken E., Vanstone S.: Existence results for \(KS_3(v; 2,4)\)s. Discret. Math. 62, 197-210 (1986). · Zbl 0613.05012
[93] Lamken E., Vanstone S.: A generalization of the Room square problem. Congr. Numer. 51, 265-276 (1986). · Zbl 0619.05012
[94] Stinson D., Vanstone S.: Orthogonal packings in \(PG(5,2)\). Aequationes Math. 31, 159-168 (1986). · Zbl 0606.05010
[95] Colbourn C., Curran D., Vanstone S.: Recursive constructions for Kirkman squares with block size 3. Utilitas Math. 32, 169-174 (1987). · Zbl 0637.05006
[96] Fuji-Hara R., Vanstone S.: The existence of orthogonal resolutions of lines in \(AG(n, q)\). J. Comb. Theory Ser. A 45, 139-147 (1987). · Zbl 0633.51008
[97] Fuji-Hara R., Vanstone S.: Balanced Room squares from finite geometries and their generalizations. Ann. Discret. Math. 34, 179-188 (1987). · Zbl 0639.05008
[98] Furino S., Vanstone S.: Hyperplane skew resolutions in spaces of even dimension. Ars Comb. 24, 63-69 (1987). · Zbl 0652.05007
[99] Jungnickel D., Vanstone S.: Hyperfactorizations of graphs and 5-designs. Kuwait J. Math. 14, 213-223 (1987). · Zbl 0639.05039
[100] Jungnickel D., Vanstone S.: Conical embeddings of Steiner systems. Rendiconti del Circolo Matematico di Palermo, Series II(36), 90-94 (1987). · Zbl 0653.51006
[101] Koyama K., Vanstone S.: How to demonstrate the breaking of public key cryptosystems. In: Proceedings of the 1987 Workshop on Cryptography and Information Security, pp. 161-170 (1987).
[102] Lamken E., Mills W., Mullin R., Vanstone S.: Coverings of pairs by quintuples. J. Comb. Theory Ser. A 44, 49-68 (1987). · Zbl 0651.05025
[103] Lamken E., Vanstone S.: The existence of partitioned balanced tournament designs of side \(4n+3\). Ann. Discret. Math. 34, 319-338 (1987). · Zbl 0642.05010
[104] Lamken E., Vanstone S.: The existence of partitioned balanced tournament designs. Ann. Discret. Math. 34, 339-352 (1987). · Zbl 0642.05011
[105] Lamken E., Vanstone S.: Skew transversals in frames. J. Combin. Math. Comb. Comput. 2, 37-50 (1987). · Zbl 0642.05008
[106] Agnew G., Mullin R., Vanstone S.: An interactive data exchange protocol based on discrete exponentiation. In: Advances in Cryptology—EUROCRYPT ’88. Lecture Notes in Computer Science, vol. 453, pp. 159-166 (1988).
[107] Agnew G., Mullin R., Vanstone S.: Fast exponentiation in \(GF(2^{n})\). In: Advances in Cryptology—EUROCRYPT ’88. Lecture Notes in Computer Science, vol. 453, pp. 251-255 (1988).
[108] Blake I., van Oorschot P., Vanstone S.: Complexity issues for public key cryptography. Perform. Limits Commun. Theory Pract. 142, 75-97 (1988).
[109] Curran D., Vanstone S.: Doubly resolvable designs from generalized Bhaskar Rao designs. Discret. Math. 73, 49-63 (1988-1989). · Zbl 0677.05011
[110] Fuji-Hara R., Vanstone S.: Hyperplane skew resolutions and their applications. J. Comb. Theory Ser. A 47, 134-144 (1988). · Zbl 0635.51007
[111] Hall Jr M., Roth R., van Rees G., Vanstone S.: On designs \((22,33,12,8,4)\). J. Comb. Theory Ser. A 47, 157-175 (1988).
[112] Lamken E., Vanstone S.: The existence of a class of Kirkman squares of index 2. J. Aust. Math. Soc. Ser. A 44, 33-41 (1988). · Zbl 0668.05016
[113] Lamken E., Vanstone S.: Orthogonal resolutions in odd balanced tournament designs. Gr. Comb. 4, 241-255 (1988). · Zbl 0664.05011
[114] Lamken E., Vanstone S.: A note on group divisible designs with mutually orthogonal resolutions. J. Aust. Math. Soc. Ser. A 44, 397-401 (1988). · Zbl 0656.05010
[115] Lamken E., Vanstone S.: On the existence of \((2,4;3, m, h)\)-frames for \(h=1,3\) and \(6\). J. Comb. Math. Combin. Comput. 3, 135-151 (1988). · Zbl 0656.05018
[116] Mullin R., Onyszchuk I., Vanstone S., Wilson, R.: Optimal normal bases in \(GF(p^{n})\), Discret. Appl. Math. 22 149-161 (1988-1989). · Zbl 0661.12007
[117] Stinson D., Vanstone S.: A combinatorial approach to threshold schemes. SIAM J. Discret. Math. 2, 230-236 (1988). · Zbl 0667.05008
[118] Ash D., Blake I., Vanstone S.: Low complexity normal bases. Discret. Appl. Math. 25, 191-210 (1989). · Zbl 0712.11073
[119] Beutelspacher A., Jungnickel D., Vanstone S.: On the chromatic index of a finite projective space. Geom. Dedicata 32, 313-318 (1989). · Zbl 0695.51002
[120] Jungnickel D., Vanstone S.: On primitive polynomials over finite fields. J. Algebra 124, 337-353 (1989). · Zbl 0694.12013
[121] Lamken E., Vanstone S.: Balanced tournament designs and related topics. Discret. Math. 77, 159-176 (1989). · Zbl 0682.05013
[122] Menezes A., van Oorschot P., Vanstone S.: Some computational aspects of root finding in \(GF(q^{m})\). In: Symbolic and Algebraic Computation. Lecture Notes in Computer Science, vol. 358, pp. 259-270 (1989).
[123] Phelps K., Stinson D., Vanstone S.: The existence of simple \(S_3(3,4, v)\). Discret. Math. 77, 255-258 (1989). · Zbl 0681.05009
[124] Vanstone S., van Oorschot P.: An Introduction to Error Correcting Codes with Applications. Kluwer Academic Publishers, Dordrecht (1989). · Zbl 0726.94006
[125] van Oorschot P., Vanstone S.: A geometric approach to root finding in \(GF(q^m)\). IEEE Trans. Inf. Theory 35, 444-453 (1989). · Zbl 0681.12008
[126] Agnew G., Mullin R., Vanstone S.: Improved digital signature scheme based on discrete exponentiation. Electron. Lett. 26, 1024-1025 (1990).
[127] Agnew G., Mullin R., Vanstone, S.: A fast elliptic curve cryptosystem. In: Advances in Cryptology—EUROCRYPT ’89. Lecture Notes in Computer Science, vol. 434, pp. 706-708 (1990).
[128] Beth T., Vanstone S., Agnew G.: What one should know about public key algorithms—today! Securicom 90, 47-63 (1990).
[129] Jungnickel D., Menezes A., Vanstone S.: On the number of self-dual bases of \(GF(q^m)\) over \(GF(q)\). Proc. AMS 109, 23-29 (1990). · Zbl 0698.12015
[130] Lamken E., Vanstone S.: The existence of skew Howell designs of side \(2n\) and order \(2n+2\). J. Comb. Theory Ser. A 54, 20-40 (1990). · Zbl 0698.05010
[131] Lamken E., Vanstone S.: Balanced tournament designs and resolvable \((v,3,2)\)-BIBDs. Discret. Math. 83, 37-47 (1990). · Zbl 0705.05005
[132] Lamken E., Vanstone S.: Balanced tournament designs with almost orthogonal resolutions. J. Aust. Math. Soc. Ser. A 49, 175-195 (1990). · Zbl 0739.05018
[133] Menezes A., Vanstone S.: The implementation of elliptic curve cryptosystems. In: Advances in Cryptology—AUSCRYPT ’90. Lecture Notes in Computer Science, vol. 453, pp. 2-13 (1990).
[134] Menezes A., Vanstone S.: Isomorphism classes of elliptic curves over finite fields of characteristic 2. Utilitas Math. 38, 135-154 (1990). · Zbl 0727.14021
[135] Vanstone S., van Oorschot P.: On splitting sets in block designs and finding roots of polynomials. Discret. Math. 84, 71-85 (1990). · Zbl 0703.05007
[136] van Oorschot P., Vanstone S.: Some geometric aspects of root finding in \(GF(q^m)\). Contemp. Math. 111, 303-307 (1990). · Zbl 0707.05013
[137] Agnew G., Mullin R., Onyszchuk I., Vanstone S.: An implementation for a fast public-key cryptosystem. J. Cryptol. 3, 63-79 (1991). · Zbl 0725.94002
[138] Boros E., Jungnickel D., Vanstone S.: The existence of non-trivial hyperfactorizations of \(K_{2n}\). Combinatorica 11, 9-15 (1991). · Zbl 0760.05070
[139] Jungnickel D., Vanstone S.: Triple systems in \(PG(2, q)\). Discret. Math. 92, 131-135 (1991). · Zbl 0764.05012
[140] Jungnickel D., Mullin R., Vanstone S.: The spectrum of \(α \)-resolvable block designs with block size 3. Discret. Math. 97, 269-277 (1991). · Zbl 0753.05008
[141] Lamken E., Rees R., Vanstone S.: Class-uniformly resolvable pairwise balances designs with block sizes 2 and 3. Discret. Math. 92, 197-209 (1991). · Zbl 0749.05011
[142] Menezes A., Vanstone S. (eds.): Advances in Cryptology—CRYPTO ’90, Lecture Notes in Computer Science, vol. 537 (1991).
[143] Phelps K., Vanstone S.: Isomorphism of strong starters in cyclic groups. J. Comb. Theory Ser. A 57, 287-293 (1991). · Zbl 0739.20006
[144] Beutelspacher A., Jungnickel D., van Oorschot P., Vanstone S.: Pair-splitting sets in \(AG(m, q)\). SIAM J. Discret. Math. 5, 451-459 (1992). · Zbl 0798.05011
[145] Koyama K., Maurer U., Okamoto T., Vanstone S.: New public-key schemes based on elliptic curves over the ring \(Z_n\). In: Advances in Cryptology—CRYPTO ’91. Lecture Notes in Computer Science, vol. 576, pp. 252-266 (1992). · Zbl 0839.94007
[146] Menezes A., van Oorschot P., Vanstone S.: Subgroup refinement algorithms for root finding in \(GF(q)\). SIAM J. Comput. 21, 228-239 (1992). · Zbl 0754.11041
[147] Menezes A., Vanstone S.: A note on cyclic groups, finite fields, and the discrete logarithm problem. Appl. Algebra Eng. Commun. Comput. 3, 67-74 (1992). · Zbl 0749.11056
[148] Seberry J., McKay B., Vanstone S. (eds.): Selected papers in combinatorics—a volume dedicated to R.G. Stanton. In: Discrete Mathematics, vol. 92 (1991).
[149] Tonchev V., Vanstone S.: On Kirkman triple systems of order 33. Discret. Math. 106-107, 493-496 (1992). · Zbl 0773.05025
[150] Agnew G., Mullin R., Vanstone S.: An implementation of elliptic curve cryptosystems over \(F_{2^{155}}\). IEEE J. Sel. Areas Commun. 11, 804-813 (1993).
[151] Agnew G., Mullin R., Vanstone S.: Arithmetic operations in \(GF(2^m)\). J. Cryptol. 6, 3-13 (1993). · Zbl 0793.11032
[152] Agnew G., Mullin R., Vanstone S.: On the development of a fast elliptic curve cryptosystem. In: Advances in Cryptology—EUROCRYPT ’92. Lecture Notes in Computer Science, vol. 658, pp. 482-487 (1993). · Zbl 0800.94195
[153] Blake I., Gao S., Menezes A., Mullin R., Vanstone S., Yaghoobian T.: Applications of Finite Fields. Kluwer Academic Publishers, Dordrecht (1993). · Zbl 0779.11059
[154] Furino S., Vanstone S.: Pairwise balanced designs with block sizes \(5t+1\). In: Graphs, Matrices, and Designs. Lecture Notes in Pure and Applied Mathematics, vol. 139, pp. 147-170 (1993). · Zbl 0792.05020
[155] Gilbert W., Vanstone S.: Classical Algebra. Waterloo Mathematics Foundation, Waterloo (1993).
[156] Harper G., Menezes A., Vanstone S.: Public-key cryptosystems with very small key lengths. In: Advances in Cryptology—EUROCRYPT ’92. Lecture Notes in Computer Science, vol. 658, pp. 163-173 (1993). · Zbl 0787.94017
[157] Jungnickel D., Vanstone S. (eds.): Coding Theory, Design Theory, Group Theory. Wiley, New York (1993).
[158] Lamken E., Vanstone S.: Existence results for doubly near resolvable \((v,3,2)\)-BIBDs. Discret. Math. 120, 135-148 (1993). · Zbl 0787.05009
[159] Menezes A., Okamoto T., Vanstone S.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inf. Theory 39, 1639-1646 (1993). · Zbl 0801.94011
[160] Menezes A., Vanstone S.: Elliptic curve cryptosystems and their implementation. J. Cryptol. 6, 209-224 (1993). · Zbl 0782.94008
[161] Menezes A., Vanstone S., Zuccherato R.: Counting points on elliptic curves over \(F_{2^m}\). Math. Comput. 60, 407-420 (1993). · Zbl 0809.14045
[162] Vanstone S., Stinson D., Schellenberg P., Rosa A., Rees R., Colbourn C., Carter M., Carter J.: Hanani triple systems. Israel J. Math. 83, 305-319 (1993). · Zbl 0783.05023
[163] Qu M., Vanstone S.: Factorizations in the elementary abelian \(p\)-group and their cryptographic significance. J. Cryptol. 7, 201-2012 (1994). · Zbl 0827.20061
[164] Qu M., Vanstone S.: The knapsack problem in cryptography. Contemp. Math. 168, 291-308 (1994). · Zbl 0834.94014
[165] Vanstone S., Zuccherato R.: Using four-prime RSA in which some of the bits are specified. Electron. Lett. 30, 2118-2119 (1994).
[166] Gao S., Vanstone S.: On orders of optimal normal basis generators. Math. Comput. 64, 1227-1233 (1995). · Zbl 0868.11059
[167] Jungnickel D., Vanstone S.: An application of coding theory to a problem in graphical enumeration. Arch. Math. 65, 461-464 (1995). · Zbl 0855.05069
[168] Lee T., Vanstone S.: Subspaces and polynomial factorization over finite fields. Appl. Algebra Eng. Commun. Comput. 6, 147-157 (1995). · Zbl 0821.11061
[169] Vanstone S., Zuccherato R.: Short RSA keys and their generation. J. Cryptol. 8, 101-114 (1995). · Zbl 0828.94010
[170] Jungnickel D., De Resmini M., Vanstone S.: Codes based on complete graphs. Des. Codes Cryptogr. 8, 159-165 (1996). · Zbl 0943.94012
[171] Jungnickel D., Vanstone S.: Graphical codes—a tutorial. Bull. ICA 18, 45-64 (1996).
[172] Menezes A., van Oorschot P., Vanstone S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996). · Zbl 0868.94001
[173] Wevrick D., Vanstone S.: Class-uniformly resolvable designs with block sizes 2 and 3. J. Comb. Des. 4, 177-202 (1996). · Zbl 0913.05015
[174] Jungnickel D., Vanstone S.: Graphical codes revisited. IEEE Trans. Inf. Theory 43, 136-146 (1997). · Zbl 0869.94039
[175] Jungnickel D., Vanstone S.: An application of difference sets to a problem concerning graphical codes. J. Stat. Plan. Inference 62, 43-46 (1997). · Zbl 0881.05027
[176] Vanstone S.: Elliptic curve cryptosystem—The answer to strong, fast public-key cryptography for securing constrained environments. Inf. Secur. Tech. Rep. 2, 78-87 (1997).
[177] Vanstone S., Zuccherato R.: Elliptic curve cryptosystems using curves of smooth order over the ring \(\mathbb{Z}_n\). IEEE Trans. Inf. Theory 43, 1231-1237 (1997). · Zbl 0909.94016
[178] Müller V., Vanstone S., Zuccherato R.: Discrete logarithm based cryptosystems in quadratic function fields of characteristic 2. Des. Codes Cryptogr. 14, 159-178 (1998). · Zbl 0922.94005
[179] Jungnickel D., Vanstone S.: q-ary graphical codes. Discret. Math. 208-209, 375-386 (1999). · Zbl 0957.94037
[180] Jungnickel D., Vanstone S.: Ternary graphical codes. J. Comb. Math. Comb. Comput. 29, 17-31 (1999). · Zbl 0988.94031
[181] Gallant R., Lambert R., Vanstone S.: Improving the parallelized Pollard lambda search on anomalous binary curves. Math. Comput. 69, 1699-1705 (2000). · Zbl 1101.14325
[182] Koblitz N., Menezes A., Vanstone S.: The state of elliptic curve cryptography. Des. Codes Cryptogr. 19, 173-193 (2000). · Zbl 0996.94032
[183] Lam C., Shallit J., Vanstone S.: Worst-case analysis of an algorithm for computing the greatest common divisor of \(n\) inputs. In: Coding Theory, Cryptography and Related Areas, pp. 156-166. Springer, Berlin (2000). · Zbl 0983.11073
[184] Gallant R., Lambert R., Vanstone S.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Advances in Cryptology—CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 190-200 (2001). · Zbl 1002.94022
[185] Johnson D., Menezes A., Vanstone S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1, 36-63 (2001).
[186] Pintsov L., Vanstone S.: Postal revenue collection in the digital age. In: Financial Cryptography 2000. Lecture Notes in Computer Science, vol. 2001, pp. 105-120 (1962). · Zbl 0999.68560
[187] Brown D., Gallant R., Vanstone S.: Provably secure implicit certificate schemes. In: Financial Cryptography 2001. Lecture Notes in Computer Science, vol. 2339, pp. 156-165 (2002). · Zbl 1051.94511
[188] Lam C., Gong G., Vanstone S.: Message authentication codes with error correcting capabilities. In: Information and Communications Security—ICICS 2002. Lecture Notes in Computer Science, vol. 2513, pp. 354-366 (2002). · Zbl 1023.94529
[189] Qu M., Stinson D., Vanstone S.: Cryptanalysis of the Sakazaki-Okamoto-Mambo ID-based key distribution system over elliptic curves. In: Finite Fields with Applications in Coding Theory. Cryptography and Related Areas, pp. 263-269. Springer, Berlin (2002). · Zbl 1016.94516
[190] Antipa A., Brown D., Menezes A., Struik R., Vanstone S.: Validation of elliptic curve public keys. In: Proceedings of PKC 2003. Lecture Notes in Computer Science, vol. 2567, pp. 211-223 (2003). · Zbl 1033.94509
[191] Law L., Menezes A., Qu M., Solinas J., Vanstone S.: An efficient protocol for authenticated key agreement. Des. Codes Cryptogr. 28, 119-134 (2003). · Zbl 1016.94025
[192] Vanstone S.: Next generation security for wireless: elliptic curve cryptography. Comput. Secur. 22, 412-415 (2003).
[193] Gilbert W., Vanstone S.: Introduction to Mathematical Thinking: Algebra and Number Systems. Pearson, London (2004). · Zbl 1074.00002
[194] Hankerson D., Menezes A., Vanstone S.: Guide to Elliptic Curve Cryptography. Springer, Berlin (2004). · Zbl 1059.94016
[195] Antipa A., Brown D., Gallant R., Lambert R., Struik R., Vanstone S.: Accelerated verification of ECDSA signatures. In: Selected Areas in Cryptography—SAC 2005. Lecture Notes in Computer Science, vol. 3897, pp. 307-318 (2006). · Zbl 1151.94595
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.