McLachlan, Robert I.; O’Neale, Dion R. J. Preservation and destruction of periodic orbits by symplectic integrators. (English) Zbl 1196.65191 Numer. Algorithms 53, No. 2-3, 343-362 (2010). Reviewer: Josep J. Masdemont (Barcelona) MSC: 65P10 PDF BibTeX XML Cite \textit{R. I. McLachlan} and \textit{D. R. J. O'Neale}, Numer. Algorithms 53, No. 2--3, 343--362 (2010; Zbl 1196.65191) Full Text: DOI
Gentile, Guido; Cortez, Daniel A.; Barata, João C. A. Stability for quasi-periodically perturbed Hill’s equations. (English) Zbl 1100.34038 Commun. Math. Phys. 260, No. 2, 403-443 (2005). Reviewer: Jinde Cao (Nanjing) MSC: 34C27 34D10 34D20 PDF BibTeX XML Cite \textit{G. Gentile} et al., Commun. Math. Phys. 260, No. 2, 403--443 (2005; Zbl 1100.34038) Full Text: DOI arXiv
Obaya, Rafael; Paramio, Miguel Directional differentiability of the rotation number for the almost- periodic Schrödinger equation. (English) Zbl 0763.34060 Duke Math. J. 66, No. 3, 521-552 (1992). Reviewer: E.Elizalde (Barcelona) MSC: 34L40 PDF BibTeX XML Cite \textit{R. Obaya} and \textit{M. Paramio}, Duke Math. J. 66, No. 3, 521--552 (1992; Zbl 0763.34060) Full Text: DOI
Chierchia, Luigi A direct method for constructing solutions of the Hamilton-Jacobi equation. (English) Zbl 0726.70009 Meccanica 25, No. 4, 246-252 (1990). Reviewer: Á.Bosznay (Budapest) MSC: 70H20 70-08 PDF BibTeX XML Cite \textit{L. Chierchia}, Meccanica 25, No. 4, 246--252 (1990; Zbl 0726.70009) Full Text: DOI
Tkachenko, V. I. Splitting and the spectrum of a linear differential equation with quasiperiodic coefficients. (English. Russian original) Zbl 0723.34072 Ukr. Math. J. 42, No. 10, 1228-1233 (1990); translation from Ukr. Mat. Zh. 42, No. 10, 1383-1388 (1990). MSC: 34L05 34L40 34A30 34D05 PDF BibTeX XML Cite \textit{V. I. Tkachenko}, Ukr. Math. J. 42, No. 10, 1228--1233 (1990; Zbl 0723.34072); translation from Ukr. Mat. Zh. 42, No. 10, 1383--1388 (1990) Full Text: DOI
Benettin, Giancarlo; Chierchia, Luigi; Fassò, Francesco Exponential estimates on the one-dimensional Schrödinger equation with bounded analytic potential. (English) Zbl 0713.34054 Ann. Inst. Henri Poincaré, Phys. Théor. 51, No. 1, 45-66 (1989). Reviewer: S.Lenhart MSC: 34D10 34L40 PDF BibTeX XML Cite \textit{G. Benettin} et al., Ann. Inst. Henri Poincaré, Phys. Théor. 51, No. 1, 45--66 (1989; Zbl 0713.34054) Full Text: Numdam EuDML