zbMATH — the first resource for mathematics

Dynamics of two satellites in the 2/1 mean-motion resonance: application to the case of Enceladus and Dione. (English) Zbl 1111.70011
Summary: The dynamics of a pair of satellites similar to Enceladus-Dione is investigated with a two-degrees-of-freedom model written in the domain of the planar general three-body problem. Using surfaces of section and spectral analysis methods, we study the phase space of the system in terms of several parameters, including the most recent data. A detailed study of the main possible regimes of motion is presented, and in particular we show that, besides the two separated resonances, the phase space is replete with secondary resonances.

70F15 Celestial mechanics
70F07 Three-body problems
70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
Full Text: DOI
[1] Beaugé, C., Callegari Jr., N., Ferraz-Mello, S., Michtchenko, T.A.: Resonances and stability of extra-solar planetary systems. In: Knežević Z., Milani A.(eds.). IAU Colloq. 197, 3–18 (2005)
[2] Bevilacqua J.S. and Sessin W. (1987). First order perturbation in the Enceladus–Dione system. Rev. Mex. Astr. Astrof. 14: 627–630
[3] Bevilacqua, J.S., Sessin, W., Chen, J.: Periodic orbits in the Enceladus–Dione system’. In: Vieira Martins R. et al. (eds.) Orbital Dynamics of Natural and Artificial Objects, 13–21, Observatório Nacional, Rio de Janeiro, Brasil (1989).
[4] Michtchenko T.A., Ferraz-Mello S. and Callegari N. (2004). Dynamics of two planets in the 2/1 mean–motion resonance. Celest. Mech. Dyn. Astr. 89: 201–234 · Zbl 1151.70321 · doi:10.1023/B:CELE.0000038599.17312.49
[5] Ferraz-Mello S., Michtchenko T.A. and Callegari N. (2006). Dynamics of two planets in the 3/2 mean-motion resonance: application to the planetary system of the pulsar PSR B1252+12. Celest. Mech. Dyn. Astr. 94: 381–397 · Zbl 1094.85500 · doi:10.1007/s10569-006-9002-4
[6] Champenois S. and Vienne A. (1999). Chaos and secondary resonances in the Mimas-Tethys system. Celest. Mech. Dyn. Astr. 74: 111–146 · Zbl 0955.70010 · doi:10.1023/A:1008314007365
[7] Ferraz-Mello S. (1985). First-order resonances in satellites orbits. In: Ferraz-Mello, S. and Sessin, W. (eds) Resonances in the Motion of the Planets, Satellites and Asteroids, pp 37–52. IAG/USP, Sao Paulo · Zbl 0602.70028
[8] Ferraz-Mello S. and Dvorak R. (1987). Chaos and secular variations of planar orbits in 2:1 resonance with Dione. Astr. and Astrophys. 179: 304–310 · Zbl 0621.70022
[9] Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C.: Regular motions in extra-solar planetary systems. In Steves, B.A., Maciejewicz, A.J., Hendry M. (eds.) Chaotic Worlds: From Order to Disorder in Gravitational N-Body Systems, pp. 255–288. Springer, Dordrecht. ArXiv: astro-ph/0402335 (2006)
[10] Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C., Callegari Jr. N.: Extra-solar planetary systems. In: Dvorak, R. et al. (eds.) Lecture Notes in Physics, 683, 219–271 (2005)
[11] Goldreich P. (1965). An explanation of the frequent occurence of commensurable mean motion in the solar system. MNRAS 130: 159–181
[12] Henrard J. and Lemaitre A. (1983). A second fundamental model for resonance. Celest. Mech. 39: 197–218 · Zbl 0513.70012
[13] Hori G. (1985). Mutual perturbations of 1:1 commensurable small bodies with the use of canonical relative coordinates. Part I. In: Ferraz-Mello, S. and Sessin, W. (eds) Resonances in the Motion of the Planets, Satellites and Asteroids., pp 33–66. IAG/USP, Sao Paulo · Zbl 0599.70004
[14] Jacobson R.A. (2004). The orbits of the major Saturn Satellites and the gravity field of Saturn from spacecraft and Earth-based observations. Astron. J. 128: 492–501 · doi:10.1086/421738
[15] Jacobson R.A., Antreasian P.G., Bordi J.J., Criddle K.E., Ionasescu R., Jones J.B., Mackenzie R.A., Pelletier F.J., Owen W.M., Roth D.C. and Stauch J.R. (2005). The gravity field of the Saturnian system and the orbits of the major Saturnian satellites. Bull. Am. Astron. Soc. 37: 729
[16] Jacobson R.A., Antreasian P.G., Bordi J.J., Criddle K.E., Ionasescu R., Jones J.B., Mackenzie R.A., Meek M.C., Parcher P., Pelletier F.J., Owen W.M., Roth D.C., Roundhill I.M. and Stauch J.R. (2006). The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astron. J. 132: 2520–2526 · doi:10.1086/508812
[17] Jancart S., Lemaitre A. and Istace A. (2002). Second fundamental model of resonance with asymmetric equilibria. Celest. Mech. Dyn. Astr. 84: 197–221 · Zbl 1027.70024 · doi:10.1023/A:1019973222514
[18] Karch M. and Dvorak R. (1988). New results on the possible chaotic motion of Enceladus. Celest. Mech. Dyn. Astr. 43: 361–369
[19] Laskar J. and Robutel P. (1995). Stability of the planetary three-body problem I: expansion of the planetary Hamiltonian. Celest. Mech. Dyn. Astr. 62: 193–217 · Zbl 0837.70008 · doi:10.1007/BF00692088
[20] Lemaitre A. and Henrard J. (1990). On the origin of chaotic behavior in the 2/1 Kirkwood gap. Icarus 83: 391–409 · doi:10.1016/0019-1035(90)90075-K
[21] Lichtenberg A.J. and Lieberman M.A. (1983). Regular and stochastic motion. Springer-Verlag, Heidelberg · Zbl 0506.70016
[22] Malhotra R. and Dermott S.F. (1990). The role of secondary resonances in the orbital history of miranda. Icarus 85: 444–480 · doi:10.1016/0019-1035(90)90126-T
[23] Message, P.J.: Orbits of Saturn’s satellites: some aspects of commensurabilities and periodic orbits. In: Steves, B.A., Roy, A.E. (eds.) The Dynamics of Small Bodies in the Solar System. Kluwer Academic Publishers, pp. 207–225 (1999)
[24] Michtchenko T.A. and Ferraz-Mello S. (2001). Modeling the 5:2 mean–motion resonance in the Jupiter–Saturn planetary system. Icarus 149: 357–374 · doi:10.1006/icar.2000.6539
[25] Michtchenko T.A., Beaugé C. and Ferraz-Mello S. (2006). Stationary orbits in resonant extrasolar planetary systems. Celest. Mech. Dyn. Astr. 94: 411–432 · Zbl 1094.85002 · doi:10.1007/s10569-006-9009-x
[26] Peale, S.J: Orbital resonances, unsual configurations and exotic rotation states among planetary satellites. In: Burns, J.A. (ed.) Satellites pp. 159–223 (1986)
[27] Peale S.J (1999). Origin and evolution of the natural atellites. Ann. Rev. Astron. Astrophys. 37: 533–602 · doi:10.1146/annurev.astro.37.1.533
[28] Peale S.J (2003). Tidally induced volcanism. Celest. Mech. Dyn. Astr. 87: 129–155 · Zbl 1092.86004 · doi:10.1023/A:1026187917994
[29] Spencer J.R., Pearl J.C., Segura M., Flasar F.M., Mamoutkine A., Romani P., Buratti B.J., Hendrix A.R., Spilker L.J. and Lopes R.M.C. (2006). Cassini encounters enceladus: background and the discovery of a south polar hot spot. Science 311: 1401–1405 · doi:10.1126/science.1121661
[30] Salgado T.M.V. and Sessin W. (1985). The 2:1 commensurability in Enceladus–Dione system. In: Ferraz-Mello, S. and Sessin, W. (eds) Resonances in the Motion of the Planets, Satellites and Asteroids, pp 93–105. IAG/USP, Sao Paulo · Zbl 0594.70018
[31] Sessin W. and Ferraz-Mello S. (1984). Motion of two planets with periods commensurable in the ratio 2:1. Solutions of the Hori auxiliaty system. Celest. Mech. 32: 307–332 · Zbl 0563.70004
[32] Sinclair A.T. (1972). On the origin of the commensurabilities amongst the satellites of Saturn. MNRAS 160: 169–187
[33] Sinclair, A.T.: A re-consideration of the evolution hyphotesis of the origin of the resonances among Saturn’s satellites. In: Dynamical trapping and evolution in solar system; Proceedings of Seventy-four Colloquium, Gerakini, Greece, August 30-September 2, 1982 (A84-34976 16-89), Dordrecht, D. Reidel Publishing. Co., pp. 19–25 (1983)
[34] Shinkin V.N. (2001). Approximate analytic solutions of the averaged three-body problem at first-order resonance with large oblateness of the central planet. Celest. Mech. Dyn. Astr. 79: 15–27 · Zbl 0993.70011 · doi:10.1023/A:1011187031692
[35] Tittemore W. and Wisdom J. (1988). Tidal evolution of the Uranian satellites I. Passage of Ariel and Umbriel through the 5:3 Mean-Motion Commensurability. Icarus 74: 172–230 · doi:10.1016/0019-1035(88)90038-3
[36] Tittemore W. and Wisdom J. (1990). Tidal evolution of the Uranian satellites III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3 and Ariel-Umbriel 2:1 Mean–Motion Commensurability. Icarus 85: 394–443 · doi:10.1016/0019-1035(90)90125-S
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.