×

zbMATH — the first resource for mathematics

Advances in Bayesian decision making in reliability. (English) Zbl 1430.62025
Summary: Starting in the late 80s Bayesian methods have gained increasing attention in the reliability literature. The focus of most of the earlier Bayesian work in reliability involved statistical inference and thus the main emphasis was on modeling and analysis. Advances in Bayesian computing after the 90’s have significantly contributed not only to the use of Bayesian inference and prediction but also to the implementation of Bayesian decision-theoretic approaches in reliability problems. In this review, we present an overview of Bayesian methods to solve decision problems in reliability some of which involve two or more decision makers with conflicting objectives. We consider problems in areas such as design, life testing, preventive maintenance, reliability certification, or warranty policies. In doing so, we present key aspects of the decision problems, give a brief review of earlier methods and finally discuss recent advances in Bayesian approaches to solve them.
MSC:
62C10 Bayesian problems; characterization of Bayes procedures
62K05 Optimal statistical designs
62N03 Testing in survival analysis and censored data
90B25 Reliability, availability, maintenance, inspection in operations research
91B06 Decision theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antoniak, C. E., Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, Annals of Statistics, 2, 1152-1174 (1974) · Zbl 0335.60034
[2] Arias, P.; Martin, J.; Ruggeri, F.; Suarez-Llorens, A., A robust Bayesian approach to optimal replacement policy for gas pipelines, Entropy, 17, 3656-3678 (2015)
[3] Arunkumar, S., Nonparametric age replacement policy, Sankhya Series A, 34, 251-256 (1972) · Zbl 0255.62073
[4] Azaiez, M. N.; Bier, V., Optimal resource allocation for security in reliability systems, European Journal of Operational Research, 181, 773-786 (2007) · Zbl 1131.90001
[5] Bancroft, G. A.; Dunsmore, I. R., Predictive sequential life testing, Biometrika, 65, 3, 609-613 (1978) · Zbl 0392.62079
[6] Banks, D.; Rios, J.; Ríos Insua, D., Adversarial risk analysis (2015), CRC Press · Zbl 1390.91117
[7] Barlow, R. E., Theory of reliability: a historical perspective, IEEE Transactions on Reliability, 33, 16-20 (1984) · Zbl 0548.90031
[8] Barlow, R. E.; Hsiung, J. H., Expected information from a life test experiment, The Statistician, 32, 35-45 (1983)
[9] Barlow, R. E.; Hunter, L. C., Optimum preventive maintenance policies, Operations Research, 8, 90-100 (1960) · Zbl 0095.34304
[10] Barlow, R. E.; Proschan, F., Mathematical theory of reliability (1965), John Wiley & Sons: John Wiley & Sons New York · Zbl 0132.39302
[11] Barnett, V. D., Bayesian sequential life test, Technometrics, 14, 2, 453-468 (1972) · Zbl 0235.62022
[12] Bartholomew, D. J., The sampling distribution of an estimate arising in life testing, Technometrics, 5, 361-374 (1963) · Zbl 0121.14403
[13] Bassin, W. M., A bayesian optimal overhaul interval model for the Weibull restoration process, Journal of the American Statistical Association, 68, 575-578 (1973)
[14] Beichelt, F., A unifying treatment of replacement policies with minimal repair, Naval Research Logistics, 40, 51-67 (1993) · Zbl 0778.90011
[15] Bellman, R. E.; Dreyfus, S. E., Applied dynamic programming (1962), Princeton University Press: Princeton University Press Princeton · Zbl 0106.34901
[16] Belyi, D.; Popova, E.; Morton, D.; Damien, P., Bayesian failure-rate modeling and preventive maintenance optimization, European Journal of Operational Research, 262, 1085-1093 (2017) · Zbl 1375.90093
[17] Bernardo, J. M., Statistical inference as a decision problem: the choice of sample size, The Statistician, 46, 151-153 (1997)
[18] Bhat, U. N.; Miller, G. K., Elements of applied stochastic processes (2002), Wiley · Zbl 1024.60001
[19] Bielza, C.; Muller, P.; Insua-Rios, D., Decision analysis by augmented probability simulation, Management Science, 45, 995-1007 (1999) · Zbl 1231.91061
[20] Blischke, W. R., Mathematical models for analysis of warranty policies, Mathematical and Computer Modelling, 13, 1-16 (1990) · Zbl 0709.90682
[21] Blischke, W. R., & Murthy, D. N. P. (1991). Product warranty management I: a taxonomy for warranty policies. Technical report, University of Southern California, Department of Decision Systems. Los Angeles, California. · Zbl 0775.90175
[22] Brooks, R. J., On the loss of information through censoring, Biometrika, 69, 44-137 (1982)
[23] Cagno, E.; Caron, F.; Mancini, M.; Ruggeri, F., Using AHP in determining the prior distributions on gas pipeline failures in a robust bayesian approach, Reliability Engineering and System Safety, 67, 275-284 (2000)
[24] Cano, J.; Moguerza, J.; Rios Insua, D., Bayesian reliability, availability, and maintainability analysis for hardware systems described through continuous time markov chains, Technometrics, 52, 324-334 (2010)
[25] Chaloner, K., Optimal bayesian experimental designs for linear models, Annals of Statistics, 12, 283-300 (1984) · Zbl 0554.62063
[26] Chaloner, K.; Larntz, K., Bayesian design for accelerated life testing, Journal of Statistical Planning & Inference, 33, 245-259 (1992) · Zbl 0781.62149
[27] Chen, D.; Trivedi, K., Optimization for condition-based maintenance with semi-markov decision process, Reliability Engineering and Systems Safety, 90, 25-29 (2005)
[28] Chernoff, H., Accelerated life designs for estimation, Technometrics, 4, 381-408 (1962) · Zbl 0107.35803
[29] Chien, Y. H., A general age-replacement model with minimal repair under renewing free-replacement warranty, European Journal of Operational Research, 186, 1046-1058 (2008) · Zbl 1168.90005
[30] Cho, D. I.; Parlar, M., A survey of maintenance models for multi-unit systems, European Journal of Operational Research, 51, 1-23 (1991)
[31] Chu, J.; Chintagunta, P. K., Quantifying the economic value of warranties in the u.s. server market, Journal of Marketing Science, 28, 99-121 (2009)
[32] Cinlar, E., Introduction to stochastic processes (1975), Prentice Hall · Zbl 0341.60019
[33] Clarotti, C. A.; Spizzichino, F., Bayes burn-in decision procedures, Probability in the Engineering and Informational Sciences, 4, 437-445 (1990) · Zbl 1134.90355
[34] Cox, D. R. (1962). Renewal theory. London: Methuen & Co. Ltd. · Zbl 0103.11504
[35] Cox, D. R., The statistical analysis of dependencies in point processes, (Lewis, P. A.W., Stochastic point processes (1972), Wiley: Wiley New York), 55-66
[36] Cox, D. R., Regression models and life tables, Journal of the Royal Statistical Society B, 34, 187-220 (1972) · Zbl 0243.62041
[37] Damien, P.; Galenko, A.; Popova, E.; Hanson, T., Bayesian semiparametric analysis for a single item maintenance optimization, European Journal of Operational Research, 182, 794-805 (2007) · Zbl 1121.90041
[38] Dayanik, S.; Gurler, U., An adaptive bayesian replacement policy with minimal repair, Operations Research, 50, 552-558 (2002) · Zbl 1163.90435
[39] Deely, J. J.; Keats, J. B., Bayes stopping rules for reliability testing with the exponential distribution, IEEE Transactions on Reliability, 43, 288-293 (1994)
[40] DeGroot, M. H.; Goel, P., Bayesian estimation and optimal designs in partially accelerated life testing, Naval Res. Logistics Quarterly, 26, 223-235 (1979) · Zbl 0422.62089
[41] Dellaportas, P.; Smith, A. F.M., Bayesian inference for generalized linear and proportional hazards models via Gibbs sampling, Appl. Statist., 42, 3, 443-459 (1993) · Zbl 0825.62409
[42] van Dorp, J. R.; Mazzuchi, T. A.; Soyer, R., Sequential inference and decision making during product development, Journal of Statistical Planning and Inference, 62, 207-218 (1997) · Zbl 0886.62079
[43] Doyen, L.; Gaudoin, O., Classes of imperfect repair models based on reduction of failure intensity or virtual age, Reliability Engineering and System Safety, 84, 45-56 (2004)
[44] Dunsmore, I. R., The bayesian predictive distribution in life testing models, Technometrics, 16, 455-460 (1974) · Zbl 0283.62093
[45] Dunsmore, I. R.; Wright, D. E., A decisive predictive approach to the construction of sequential acceptance sampling plans for lifetimes, Journal of the Royal Statistical Society, Series C, 34, 1-13 (1985) · Zbl 0584.62164
[46] Dykstra, R. L.; Laud, P., A Bayesian approach to reliability, Annals of Statistics, 9, 356-367 (1981) · Zbl 0469.62077
[47] Eliashberg, J.; Singpurwalla, N. D.; Wilson, S. P., Calculating the reserve for a time and usage indexed warranty, Management Science, 43, 966-975 (1997) · Zbl 0890.90072
[48] Emons, W., Warranties, moral hazard and the lemons problem, Journal of Economic Theory, 46, 16-33 (1988) · Zbl 0649.90028
[49] Erkanli, A.; Soyer, R., Simulation-based designs for accelerated life tests, Journal of Statistical Planning and Inference, 90, 335-348 (2000) · Zbl 1080.62541
[50] Escobar, M. D.; West, M., Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association, 90, 577-588 (1995) · Zbl 0826.62021
[51] Ferguson, T. S., A Bayesian analysis of some nonparametric problems, Annals of Statistics, 1, 209-230 (1973) · Zbl 0255.62037
[52] Fox, B. L., Adaptive age replacement, Journal of Mathematical Analysis and Applications, 18, 365-376 (1967) · Zbl 0244.90040
[53] Frees, E. W.; Ruppert, D., Sequential nonparametric age replacement policies, The Annals of Statistics, 13, 650-662 (1985) · Zbl 0583.62088
[54] French, S.; Rios Insua, D., Statistical decision theory (2000), Wiley
[55] Gertsbakh, I. B.; Kordonsky, K. N., Parallel time scales and two-dimensional manufacturer and individual customer warranties, IIE Transactions, 30, 1181-1189 (1998)
[56] Gibbons, R. A., A primer in game theory (1992), Pearson Education Ltd · Zbl 0759.90106
[57] Glickman, T. S.; Berger, P. D., Optimal price and protection period decisions for a product under warranty, Management Science, 22, 1381-1390 (1976)
[58] Goel, A. L.; Okumoto, K., Time-dependent error detection rate model for software reliability and other performance measures, IEEE Transactions on Reliability, 28, 206-211 (1979) · Zbl 0409.68009
[59] Gunawan, S.; Papalambros, P. Y., A Bayesian approach to reliability-based optimization with incomplete information, Journal of Mechanical Design, 128, 909-918 (2006)
[60] Gutierrez-Pena, E.; Walker, S. G., Statistical decision problems and Bayesian nonparametric methods, International Statistical Review, 73, 309-330 (2005) · Zbl 1105.62006
[61] Hausken, K., Probabilistic risk analysis and game theory, Risk Analysis, 22, 17-27 (2002)
[62] Henderson, S.; Nelson, B., Simulation (2006), Elsevier
[63] Hermann, S.; Ruggeri, F., Modeling wear degradation in cylinder liners, Quality and Reliability Engineering International, 33, 839-851 (2017)
[64] Higgins, J. J.; Tsokos, C. P., On the behavior of some quantities used in Bayesian reliability demonstration tests, IEEE Transactions on Reliability, 25, 261-264 (1976) · Zbl 0361.62089
[65] Hoffman, M.; Kueck, H.; de Freitas, N.; Doucet, A., New inference strategies for solving Markov decision processes using reversible jump MCMC, Proceedings of the twenty-fifth annual conference on uncertainty in artificial intelligence (UAI-09), 223-231 (2009), AUAI Press
[66] Hong, Y.; King, C.; Zhang, Y.; Meeker, W. Q., Bayesian life test planning for log-location-scale family of distributions, Journal of Quality Technology, 47, 336-350 (2015)
[67] Howard, R., Dynamic probabilistic systems Volume 2: Semi-Markov and decision processes (2007), Dover
[68] Huang, Y.; Guo, X., Finite horizon semi-markov decision processes with applications to maintenance systems, European Journal of Operational Research, 212, 131-140 (2011) · Zbl 1237.90249
[69] Hunter, J. J., Renewal theory in two dimensions: Basic results, Advances in Applied Probability, 6, 376-391 (1974) · Zbl 0284.60080
[70] Huzurbazar, A., Flowgraph models for multistate time-to-event data (2005), Wiley · Zbl 1055.62123
[71] Jin, G.; Matthews, D., Reliability demonstration for long-life products based on degradation testing and a weiner process model, IEEE Transactions on Reliability, 63, 781-797 (2014)
[72] Jindal, P., Risk preferences and demand drivers of extended warranties, Marketing Science, 34, 39-58 (2015)
[73] Juang, M. G.; Anderson, G., A bayesian method on adaptive preventive maintenance problem, European Journal of Operational Research, 155, 455-473 (2004) · Zbl 1045.90017
[74] Kalbfleisch, J. D., Non-parametric bayes analysis of survival time data, Journal of the Royal Statistical Society, Ser.iesB, 40, 214-221 (1978) · Zbl 0387.62030
[75] Koller, D.; Milch, B., Multi-agent influence diagrams for representing and solving games, Games and Economic Behavior, 45, 181-221 (2003) · Zbl 1054.91007
[76] Kraft, C. H.; van Eeden, C., Bayesian bioassay, Annals of Mathematical Statistics, 35, 886-890 (1964) · Zbl 0136.41802
[77] Kundu, D., Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring, Technometrics, 50, 144-154 (2008)
[78] Kuo, L., & Ghosh, S. K. (2001). Bayesian nonparametric inference for nonhomogeneous poisson processes. Technical report, North Carolina State University. Institute of Statistics Mimeo. Series No. 2530.
[79] Laud, P. W.; Smith, A. F.M.; Damien, P., Monte carlo methods for approximating a posterior hazard rate process, Statistics and Computing, 6, 77-83 (1996)
[80] Lindley, D. V., On a measure of information provided by an experiment, Annals of Statistics, 27, 986-1005 (1956) · Zbl 0073.14103
[81] Lindley, D. V., A class of utility functions, The Annals of Statistics, 4, 1-10 (1976) · Zbl 0324.62028
[82] Lindley, D. V., Making decisions (1985), Wiley: Wiley London
[83] Lindley, D. V.; Singpurwalla, N. D., On the evidence needed to reach agreed action between adversaries, with application to acceptance sampling, Journal of the American Statistical Association, 86, 933-937 (1991) · Zbl 0850.62129
[84] Lindley, D. V.; Singpurwalla, N. D., Adversarial life testing, Journal of the Royal Statistical Society, Series B, 55, 837-847 (1993) · Zbl 0782.62097
[85] Liu, B.; Wu, J.; Xie, M., Cost analysis for multi-component system with failure interaction under renewing free-replacement warranty, European Journal of Operational Research, 243, 874-882 (2015) · Zbl 1346.90278
[86] Lotka, A. J.A., Contribution to the theory of self-renewing aggregates, with special reference to industrial replacement, Annals of Mathematical Statistics, 10, 1-25 (1939) · JFM 65.0631.06
[87] Marin, J. M.; Pla, L. M.; Rios Insua, D., Forecasting for some stochastic process models related to sow farm management, Journal of Applied Statistics, 32, 797-812 (2005) · Zbl 1121.62435
[88] Martz, H. F.; Waller, R. A., A Bayesian zero-failure (BAZE) reliability demonstration testing procedure, Journal of Quality Technology, 11, 128-138 (1979)
[89] Martz, H. F.; Waller, R. A., Bayesian reliability analysis (1982), John Wiley & Sons: John Wiley & Sons New York · Zbl 0597.62101
[90] Martz, H. F.; Waterman, M. S., A Bayesian model for determining the optimal test stress for a single test unit, Technometrics, 20, 179-185 (1978) · Zbl 0398.62084
[91] Mazzuchi, T. A.; Singpurwalla, N. D., A Bayesian approach to inference for monotone failure rates, Statistics and Probability Letters, 3, 135-142 (1985) · Zbl 0573.62092
[92] Mazzuchi, T. A.; Soyer, R., Assessment of machine tool reliability using a proportional hazards model, Naval Research Logistics, 36, 765-777 (1989) · Zbl 0681.62086
[93] Mazzuchi, T. A.; Soyer, R., A bayesian perspective on some replacement strategies, Reliability Engineering and System Safety, 51, 295-303 (1996)
[94] Mazzuchi, T. A.; Soyer, R., Adaptive bayesian replacement strategies, (Berger, J. O.; Bernardo, J. M.; Dawid, A. P.; Smith, A. F.M., Bayesian statistics 5 (1996)), 667-674
[95] McDaid, K.; Wilson, S. P., Deciding how long to test software, The Statistician, 50, 2, 117-134 (2001)
[96] Menzefricke, U., Designing accelerated life tests when there is type II censoring, Communications in Statistics-Theory and Methods, 21, 2569-2590 (1992)
[97] Mercer, A., Some simple wear-dependent renewal processes, Journal of the Royal Statistical Society, Series B, 23, 368-376 (1961) · Zbl 0114.08703
[98] Merrick, J. R.; Soyer, R., Semiparametric Bayesian optimal replacement policies: application to railroad tracks, Applied Stochastic Models in Business and Industry, 33, 445-460 (2017) · Zbl 1418.62555
[99] Merrick, J. R.; Soyer, R.; Mazzuchi, T. A., A Bayesian semiparametric analysis of the reliability and maintenance of machine tools, Technometrics, 45, 58-69 (2003)
[100] Merrick, J. R.; Soyer, R.; Mazzuchi, T. A., Are maintenance practices for railroad tracks effective?, Journal of the American Statistical Association, 100, 17-25 (2005) · Zbl 1117.62401
[101] Morali, N.; Soyer, R., Optimal stopping in software testing, Naval Research Logistics, 50, 88-104 (2003) · Zbl 1045.90018
[102] Moreno, A.; Virto, M. A.; Martin, J.; Rios Insua, D., Approximate solutions to semi Markov decision processes through Markov chain monte carlo methods, Proceedings of the EUROCAST, 151-162 (2003), Springer-Verlag
[103] Muller, P., Simulation-based optimal design, (Berger, J. O.; Bernardo, J. M.; Dawid, A. P.; Smith, A. F.M., Bayesian statistics 6 (1999)), 459-474 · Zbl 0974.62058
[104] Murthy, D. N.P., Product warranty: a review and technology management implications, Proceedings of the second international conference on management of technology (1990)
[105] Nasir, E. A.; Pan, R., Simulation-based Bayesian optimal ALT designs for model discrimination, Reliability Engineering and System Safety, 134, 1-9 (2015)
[106] von Neumann, J.; Morgenstern, O., Theory of games and economic behavior (1944), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0063.05930
[107] Oakes, D., Multiple time scales in survival analysis, Lifetime Data Analysis, 1, 7-18 (1995) · Zbl 0821.62084
[108] Olde-Keizer, M. C.A.; Flapper, S. D.P.; Teunter, R. H., Condition-based maintenance policies for systems with multiple dependent components: A review, European Journal of Operational Research, 261, 405-420 (2017) · Zbl 1403.90270
[109] Percy, D. F., Bayesian enhanced strategic decision making for reliability, European Journal of Operational Research, 139, 133-145 (2002) · Zbl 1009.90062
[110] Perlstein, D.; Jarvis, W. H.; Mazzuchi, T. A., Bayesian calculation of cost optimal burn-in test durations for mixed exponential populations, Reliability Engineering and System Safety, 72, 265-273 (2001)
[111] Pievatolo, A.; Ruggeri, F., Bayesian reliability analysis of complex repairable systems, Applied Stochastic Models in Business and Industry, 20, 253-264 (2004) · Zbl 1097.90023
[112] Pievatolo, A.; Ruggeri, F., Bayesian modeling of train doors’ reliability, (O’Hagan, A.; West, M., Handbook of applied Bayesian analysis (2010), Oxford Press)
[113] Pievatolo, A.; Ruggeri, F.; Argiento, R., Bayesian analysis and prediction of failures in underground trains, Quality reliability engineering international, vol. 19, 327-336 (2003)
[114] Polson, N.; Sorensen, M., A simulation based approach to stochastic dynamic programming, Applied stochastic models in business and industry, vol. 27, 151-163 (2011) · Zbl 1277.90144
[115] Polson, N. G.; Soyer, R., Augmented probability simulation for accelerated life test design, Applied Stochastic Models in Business and Industry, 33, 322-332 (2017) · Zbl 07015505
[116] Popova, E., Basic optimality results for Bayesian group replacement policies, Operations Research Letters, 32, 283-287 (2004) · Zbl 1035.62022
[117] Priest, G., A theory of consumer product warranty, Yale Law Journal, 90, 1297-1352 (1981)
[118] Rahrouth, M.; Coolen, F. P.A.; Collen-Schrijner, P., Bayesian reliability demonstration for systems with redundancy, Proceedings of the Institute of Mechanical Engineers, Part O: Journal of Risk and Reliability, 220, 137-145 (2006)
[119] Raiffa, H.; Richardson, J.; Metcalfe, D., Negotiation analysis: The science and art of collaborative decision making (2002), Harvard University Press
[120] Ramsey, F. L., A Bayesian approach to bioassay, Biometrics, 28, 841-858 (1972)
[121] Ray, B. K.; Liu, Z.; Ravishanker, N., Dynamic reliability models for software using time-dependent covariates, Technometrics, 48, 1-10 (2006)
[122] Rios Insua, D.; Ruggeri, F.; Soyer, R.; Rasines, D. G., Adversarial issues in reliability, European Journal of Operational Research, 266, 1113-1119 (2018) · Zbl 1403.90273
[123] Rios Insua, D.; Ruggeri, F.; Wiper, M., Bayesian analysis of stochastic process models (2012), Wiley · Zbl 1273.62021
[124] Ross, S., Applied probability models with optimization applications (1992), Dover · Zbl 1191.60001
[125] Ross, S. M., Stochastic processes (1996), John Wiley & Sons: John Wiley & Sons New York · Zbl 0888.60002
[126] Rufo, M. J.; Martin, J.; Perez, C. J., Adversarial life testing: A Bayesian negotiation model, Reliability Engineering and System Safety, 131, 118-125 (2014)
[127] Ruggeri, F.; Soyer, R., Decision models for software testing, (Kenett, R. S.; Ruggeri, F.; Faltin, F. W., Analytic methods in systems and software testing (2018)), 277-286
[128] Shaomin, W., Warranty data analysis: a review, Quality and Reliability Engineering International, 28, 795-805 (2012)
[129] Sathe, P. T.; Hancock, W. M., A Bayesian approach to the scheduling of preventive maintenance, AIIE Transactions, 5, 172-179 (1973)
[130] Savage, L., The foundations of statistics (1954), John Wiley & Sons: John Wiley & Sons New York · Zbl 0055.12604
[131] Schafer, R. E.; Singpurwalla, N. D., A sequential Bayes procedure for reliability demonstration, Naval Research Logististics Quarterly, 17, 55-67 (1970) · Zbl 0201.21402
[132] Shafiee, M.; Chukova, S., Maintenance models in warranty: a literature review, European Journal of Operational Research, 229, 561-572 (2013) · Zbl 1317.90098
[133] Sheu, S. H.; Griffith, W. S., Extended block replacement policy with shock models and used items, European Journal of Operational Research, 140, 50-60 (2002) · Zbl 0998.90062
[134] Sheu, S. H.; Yeh, R. H.; Lin, Y. B.; Juang, M. G., A Bayesian perspective on age replacement with minimal repair, Reliability Engineering and System Safety, 65, 55-64 (1999)
[135] Singpurwalla, N. D., Determining an optimal time interval for testing and debugging software, IEEE Transactions on Software Engineering, 17, 313-319 (1991)
[136] Singpurwalla, N. D., Reliability and risk: A Bayesian perspective (2006), Wiley: Wiley New York · Zbl 1152.62070
[137] Singpurwalla, N. D., The utility of reliability and survival, Annals of Applied Statistics, 3, 1581-1596 (2009) · Zbl 1185.62177
[138] Singpurwalla, N. D.; Wilson, S. P., The warranty problem: its statistical and game theoretic aspects, SIAM Review, 35, 17-42 (1993) · Zbl 0769.90065
[139] Singpurwalla, N. D.; Wilson, S. P., Failure models indexed by two scales, Advances in Applied Probability, 30, 1058-1072 (1998) · Zbl 0930.60075
[140] Singpurwalla, N. D.; Wilson, S. P., Statistical methods in software reliability: Reliability and risk (1999), Springer: Springer New York · Zbl 0930.62110
[141] Smeitink, E.; Dekker, R., A simple approximation to the renewal function, IEEE Transactions on Reliability, 39, 71-75 (1990) · Zbl 0716.60097
[142] Soyer, R., Accelerated life tests: Bayesian design, (Ruggeri, F.; Kenett, R. S.; Faltin, F. W., The encyclopedia of statistics in quality and reliability, vol. 1 (2007), John Wiley and Sons: John Wiley and Sons UK), 12-20
[143] Soyer, R.; Vopatek, A. L., Adaptive Bayesian designs for accelerated life testing, (Flournoy, N.; Rosenberger, W. F., Adaptive designs. Adaptive designs, Lecture notes, 25 (1995), Institute of Mathematical Statistics), 263-275 · Zbl 0949.62569
[144] Su, C.; Wang, X. L., Modeling flexible two-dimensional warranty contracts for used products considering reliability improvement actions, Proceedings of the Institution of Mechanical Engineers Part O - Journal of Risk and Reliability, 230, 237-247 (2016)
[145] Sun, D.; Berger, J. O., Bayesian sequential reliability for Weibull and related distributions, Annals of the Institute of Statistical Mathematics, 46, 221-249 (1994) · Zbl 0814.62044
[146] Thyregod, P., Bayesian single sampling plans for life-testing with truncation of the number of failures, Scandinavian Journal of Statistics, 2, 61-70 (1975) · Zbl 0308.62092
[147] Verdinelli, I.; Polson, N. G.; Singpurwalla, N. D., Shannon information and Bayesian design for prediction in accelerated life testing, (Barlow, R. E.; Clariotti, C. A.; Spizzichino, F., Reliability and decision making (1993), Chapman & Hall), 247-256
[148] Wald, A., Statistical decision functions (1950), Wiley: Wiley New York · Zbl 0040.36402
[149] Wang, H., A survey of maintenance policies of deteriorating systems, European Journal of Operational Research, 139, 469-489 (2002) · Zbl 0995.90020
[150] Wang, W.; Chatterjee, M.; Kwiat, K., Coexistence with malicious nodes: A game theoretic approach, Proceedings of the international conference on game theory for networks, 277-286 (2009), IEEE
[151] White, D. J., A survey of applications of Markov decision processes, Journal Operational Research Society, 44, 1073-1096 (1993) · Zbl 0798.90131
[152] Wilson, J. G.; Benmerzouga, A., Bayesian group replacement policies, Operations Research, 43, 471-476 (1995) · Zbl 0845.90061
[153] Yates, S. W., Australian defence standard for Bayesian reliability demonstration, Proceedings of the fifty-forth annual reliability and maintainability symposium, 105-109 (2008)
[154] Zeephongsekul, P.; Chiera, C., Optimal software release policy based on a two- person game of timing, Journal of Applied Probability, 32, 470-481 (1995) · Zbl 0829.90149
[155] Zhang, M.; Gaudoin, O.; Xie, M., Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance, European Journal of Operational Research, 245, 531-541 (2015) · Zbl 1346.90293
[156] Zhang, Y.; Meeker, W. Q., Bayesian life test planning for the Weibull distribution with given shape parameter, Metrika, 61, 237-249 (2005) · Zbl 1079.62099
[157] Zhang, Y.; Meeker, W. Q., Bayesian methods for planning accelerated life tests, Technometrics, 48, 49-60 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.