×

zbMATH — the first resource for mathematics

A mixed Eulerian-Lagrangian method for modelling metal extrusion processes. (English) Zbl 1231.76182
Summary: A mixed Eulerian-Lagrangian approach for the computational modelling of metal extrusion processes in complex three dimensional geometries is presented. The approach involves the representation of the workpiece as a pseudo-fluid, and requires the solution of non-Newtonian fluid flow equations in an Eulerian context, using a free-surface algorithm to track its extreme deformation during its extrusion. The solid mechanics equations associated with the tools are solved in a conventional Lagrangian context. Thermal interactions between the workpiece and tools are modelled and a fluid-structure interaction technique is employed to capture the effect of the fluid traction load imposed by the workpiece on the tools, and especially the subsequent adaption of the Eulerian mesh to account for the impact of die deformation. Two extrusion test cases are investigated and the results obtained show the potential of the model with regard to representing the physics of the process, the advantages of the model over a more loosely coupled approach, and the parallel scalability of the resulting software.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76A05 Non-Newtonian fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] FORGE. http://www.transvalor.com.
[2] DEFORM. http://www.deform.com.
[3] HyperXtrude. http://www.altairhyperworks.com.
[4] SUPERFORGE. http://www.mscsoftware.com.
[5] ABAQUS. http://www.simulia.com. · Zbl 1122.74001
[6] ADINA. http://www.adina.com.
[7] ANSYS. http://www.ansys.com. · Zbl 1321.00001
[8] LS-DYNA. http://www.lstc.com.
[9] MARC. http://www.mscsoftware.com. · Zbl 0572.01016
[10] PAM-STAMP. http://www.esi-group.com.
[11] Kobayashi, S.; Oh, S.; Altan, T., Metal forming and the finite element method, (1989), Oxford University Press
[12] Wagoner, R.H.; Chenot, J.L., Metal forming analysis, (2001), Cambridge University Press
[13] Mole, N.; Chenot, J.L.; Fourment, L., A velocity based approach including acceleration to the finite element computation of viscoplastic problems, International journal for numerical methods in engineering, 39, 3439-3451, (1996) · Zbl 0884.73070
[14] Tekkaya, A.E., State-of-the-art of simulation of sheet metal forming, Journal of material processing technology, 103, 14-22, (2000)
[15] Li, G.; Jinn, J.T.; Wu, W.T.; Oh, S.I., Recent developments and applications of three dimensional modelling in bulk forming processes, Journal of material processing technology, 113, 40-45, (2001)
[16] Chenot, J.L.; Bay, F., An overview of numerical modelling techniques, Journal of material processing technology, 80-81, 8-15, (1998)
[17] Chenot, J.L.; Fourment, L.; Mocellin, K., Numerical treatment of contact and friction in FE simulation of forming processes, Journal of material processing technology, 125-126, 45-52, (2002)
[18] Chenot, J.L.; Massoni, E., Finite element modelling and control of new metal forming processes, International journal of machine tools and manufacture, 46, 1194-2000, (2006)
[19] Fourment, L.; Barboza, J.; Popa, S., Master/slave algorithm for contact between deformable bodies and axial symmetries — application to 3D metal forging, (), 269-272
[20] Grunau, C.; Coupez, T., 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computational methods applied mechanical engineering, 194, 4951-4976, (2005) · Zbl 1102.65122
[21] Boussetta, R.; Coupez, T.; Fourment, L., Adaptive remeshing based on a posteriori error estimation for forging simulation, Computer methods applied mechanical engineering, 195, 6626-6645, (2006) · Zbl 1120.74807
[22] Fernandes, J.L.; Martins, P.A.F., All hexahedral re-meshing for the finite element analysis of metal forming processes, Finite elements in analysis and design, 43, 666-679, (2007)
[23] Hartley, P.; Pillinger, I., Numerical simulation of the forging process, Computational methods applied mechanical engineering, 195, 6676-6690, (2006) · Zbl 1120.74818
[24] Liu, W.K.; Chen, J.-S.; Belytschko, T.; Zhang, Y.F., Adaptive ALE finite elements with particular reference to external work rate on frictional interface, Computational methods applied mechanical engineering, 93, 189-216, (1991) · Zbl 0743.73028
[25] Aymone, J.L.; Bittencourt, E.; Creus, G.J., Simulation of 3D metal-forming using an arbitrary Lagrangian-Eulerian finite element method, Journal of materials processing technology, 110, 218-232, (2001)
[26] Gadala, M.S.; Movahhedy, M.R.; Wang, J., On the mesh motion for ALE modeling of metal forming processes, The journal of finite elements in analysis and design, 38, 435-459, (2002) · Zbl 1079.74636
[27] Rachik, M.; Roelandt, J.M.; Maillard, A., Some phenomenological and computational aspects of sheet metal blanking simulation, Journal of materials processing technology, 128, 256-265, (2002)
[28] Mooi, H.G.; Koenis, P.T.G.; Huétink, J., An effective split of flow and die deformation calculations of aluminium extrusion, Journal of materials processing technology, 88, 67-76, (1999)
[29] Wisselink, H.H.; Huétink, J., 3D FEM simulation of stationary metal forming processes with applications to slitting and rolling, Journal of materials processing technology, 148, 328-341, (2004)
[30] Boman, R.; Papeleux, L.; Bui, Q.V.; Ponthot, J.P., Application of arbitrary Lagrangian Eulerian formulation to the numerical simulation of cold rolling forming processes, Journal of material processing technology, 177, 621-625, (2006)
[31] Gadala, M.S., Recent trends in ALE formulation and its applications to solid mechanics, Computer methods applied mechanical engineering, 193, 4247-4275, (2004) · Zbl 1068.74075
[32] Zhuang, X.; Zhao, Z.; Xiang, H.; Li, C., Simulation of sheet metal extrusion processes with arbitrary Lagrangian-Eulerian method, Transactions of nonferrous metals society of China, 18, 1172-1176, (2008)
[33] Moto Mpong, S.; de Montleau, P.; Godinas, A.; Habraken, A.M., Acceleration of finite element analysis by parallel processing, (), 47-50
[34] Mocellin, K.; Fourment, L.; Coupez, T.; Chenot, J.L., Toward large scale FE computation of hot forging process using iterative solvers, parallel algorithms and multi-grid solvers, International journal of numerical methods in engineering, 52, 473-488, (2001) · Zbl 1128.74335
[35] Belytschko, T.; Lu, Y.Y.; Gu, L., Element free Galerkin methods, International journal of numerical methods in engineering, 37, 229-256, (1994) · Zbl 0796.73077
[36] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, International journal for numerical methods in fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[37] Yoon, S.; Chen, J.-.S., Accelerated meshfree method for metal forming simulations, The journal of finite elements in analysis and design, 38, 937-948, (2002) · Zbl 1100.74648
[38] Xiong, S.; Martins, P.A.F., Numerical solution of bulk metal forming processes by the reproducing kernel particle method, Journal of material processing technology, 177, 49-52, (2006)
[39] Park, Y.H., Rigid-plastic analysis for metal forming processes using a reproducing kernel particle method, Journal of material processing technology, 183, 256-263, (2007)
[40] Alfaro, I.; Yvonnet, Y.L.; Cueto, E.; Chinesta, F.; Doblare, M., Meshless methods with applications to metal forming, Computer methods applied mechanical engineering, 195, 6661-6675, (2006) · Zbl 1120.74853
[41] Guan, Y.; Zhao, G.; Wu, X.; Lu, P., Massive metal forming process simulation based on rigid/visco-plastic Galerkin method, Journal of material processinging technology, 187-188, 412-416, (2007)
[42] Lu, P.; Zhao, G.; Guan, Y.; Wu, X., Bulk forming process simulation based on rigid-plastic/viscoplastic element free Galerkin method, Materials science and engineering: A, 187-188, 197-212, (2008)
[43] Filice, L.; Alfaro, I.; Gagliardi, F.; Cueto, E.; Micari, F.; Chinesta, F., A preliminary comparison between finite element and meshless simulations of extrusion, Journal of materials processing technology, 209, 3039-3049, (2009)
[44] Wang, H.; Li, G.; Han, X.; Zhong, Z.H., Development of parallel 3D RKPM meshless bulk forming simulation system, Advances in engineering software, 38, 87-101, (2007)
[45] Williams, A.J.; Croft, T.N.; Cross, M., Computational modelling of metal extrusion and forging processes, Journal of material processing technology, 125-126, 573-582, (2002)
[46] Kim, S.H.; Chung, S.W.; Padmanaban, S., Investigation of lubrication effect on the backward extrusion of thin-walled rectangular aluminium case with large aspect ratio, Journal of material processing technology, 180, 185-192, (2006)
[47] Jafari, M.R.; Zebarjad, S.M.; Kolahan, F., Simulation of thixoformability of A356 aluminium alloy using finite volume method, Materials science and engineering: A, 454-455, 558-563, (2007)
[48] Lou, S.; Zhao, G.; Wang, R.; Wu, X., Modeling of aluminum alloy profile extrusion process using finite volume method, Journal of materials processing technology, 206, 481-490, (2008)
[49] Zhang, L.; Michaleris, P., Investigation of Lagrangian and Eulerian finite element forming methods for modelling the laser forming process, The journal of finite elements in analysis and design, 40, 383-405, (2004)
[50] Wu, X.; Zhao, G.; Luan, Y.; Ma, X., Numerical simulation of die structure optimisation of an aluminium rectangular hollow pipe extrusion processes, Materials science and engineering: A, 435-436, 266-274, (2006)
[51] Slone, A.K.; Pericleous, K.; Bailey, C.; Cross, M., Dynamic fluid-structure interaction using finite volume unstructured mesh procedures, Computers and structures, 80, 371-390, (2002)
[52] Slone, A.K.; Pericleous, K.; Bailey, C.; Cross, M.; Bennett, C.R., A finite volume unstructured mesh approach to dynamic fluid structure interaction: an assessment of the challenge of predicting the onset of flutter, Applied mathematical modelling, 28, 211-239, (2003) · Zbl 1205.76172
[53] McManus, K.; Walshaw, C.; Cross, M., A scalable strategy for the parallelisation of multiphysics unstructured-mesh iterative codes on distributed-memory systems, International journal of high perform computing applications, 14, 137-174, (2000)
[54] McManus, K.; Williams, A.J.; Cross, M.; Croft, T.N.; Walshaw, C., Assessing the parallel performance of multi-physics tools for modelling of solidification and melting processes, International journal of high perform computing applications, 19, 1-27, (2005)
[55] Williams, A.J.; Croft, T.N.; Cross, M., A group based solution strategy for multi-physics simulations in parallel, Applied mathematical modelling, 30, 656-674, (2006) · Zbl 1163.76407
[56] Extrusion Zurich, ()
[57] PHYSICA+. http://www.physica.co.uk.
[58] Chow, P.; Cross, M.; Pericleous, K., A natural extension of standard control volume CFD procedures to polygonal unstructured meshes, Applied mathematical modelling, 20, 170-183, (1995) · Zbl 0869.76061
[59] Croft, N.; Pericleous, K.; Cross, M., PHYSICA: a multiphysics environment for complex flow processes, (), 1269-1280
[60] Bailey, C.; Cross, M., A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh, International journal for numerical methods in engineering, 38, 1757-1776, (1995) · Zbl 0822.73079
[61] Taylor, G.; Bailey, C.; Cross, M., Solution of the elasto-visco-plastic constitutive equations: a finite volume approach, Applied mathematical modelling, 19, 746-760, (1995) · Zbl 0852.73078
[62] Taylor, G.A.; Bailey, C.; Cross, M., A vertex based finite volume method applied to non-linear material problems in computational solid mechanics, International journal for numerical methods in engineering, 56, 507-529, (2003) · Zbl 1078.74670
[63] van Doormal, J.P.; Raithby, G.D., Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numerical heat transfer, 7, 147-163, (1984) · Zbl 0553.76005
[64] Spalding, D.B., A novel finite difference formulation for differential expressions involving both first and second derivatives, International journal for numerical methods in engineering, 4, 551-559, (1972)
[65] Rhie, C.M.; Chow, W.L., Numerical study of the turbulent flow past an aerofoil with trailing edge separation, AIAA journal, 21, 1525-1532, (1983) · Zbl 0528.76044
[66] Jun, L.; Spalding, D.B., Numerical simulation of flows with moving interfaces, Physico-chemical hydrodynamics, 10, 625-637, (1988)
[67] van Leer, B., Towards the ultimate conservation difference scheme IV. A new approach to numerical convection, Journal of computational physics, 23, 276-299, (1977) · Zbl 0339.76056
[68] Pericleous, K.A.; Cross, M.; Moran, G.; Chow, P.; Chan, K.S., Free surface Navier-Stokes flow with simultaneous heat transfer and solidification/melting, Advances in computational mathematics, 6, 295-308, (1996) · Zbl 0870.76060
[69] Pericleous, K.A.; Moran, G.J.; Bounds, S.M.; Chow, P.; Cross, M., Three dimensional free surface modelling in an unstructured mesh environment for metal processing applications, Applied mathematical modelling, 22, 895-906, (1998)
[70] Bailey, C.; Bounds, S.; Cross, M.; Pericleous, K.; Taylor, G., Multi-physics modelling and its application to the casting process, Computer modelling and simulation in engineering, 4, 206-212, (1999)
[71] Farhat, C.; Lesoinne, M.; Maman, M., Mixed explicit/implicit time integration of coupled aeroelastic problems: three field formulation, geometric conservation and distributed solution, International journal for numerical methods in fluids;, 22, 807-835, (1995) · Zbl 0865.76038
[72] Demirdžić, I.; Perić, M., Space conservation law in finite volume calculations of fluid flow, International journal for numerical methods in fluids, 8, 1037-1050, (1988) · Zbl 0647.76018
[73] Kleiner, M.; Schikorra, M., Virtual process and tool design for innovative extrusion processes, ()
[74] eFunda. http://www.efunda.com.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.