Lochab, Ruchika; Kumar, Vivek An improved flux limiter using fuzzy modifiers for hyperbolic conservation laws. (English) Zbl 07318207 Math. Comput. Simul. 181, 16-37 (2021). MSC: 65T 35Q 35L 65M PDF BibTeX XML Cite \textit{R. Lochab} and \textit{V. Kumar}, Math. Comput. Simul. 181, 16--37 (2021; Zbl 07318207) Full Text: DOI
Santos, Ricardo; Alves, Leonardo A comparative analysis of explicit, IMEX and implicit strong stability preserving Runge-Kutta schemes. (English) Zbl 07310753 Appl. Numer. Math. 159, 204-220 (2021). MSC: 65M06 65L06 65M15 76N06 35Q31 35Q30 PDF BibTeX XML Cite \textit{R. Santos} and \textit{L. Alves}, Appl. Numer. Math. 159, 204--220 (2021; Zbl 07310753) Full Text: DOI
Ha, Youngsoo; Kim, Chang Ho; Yang, Hyoseon; Yoon, Jungho Improving accuracy of the fifth-order WENO scheme by using the exponential approximation space. (English) Zbl 07302950 SIAM J. Numer. Anal. 59, No. 1, 143-172 (2021). MSC: 65 41A05 41A10 42A10 65M06 65M15 PDF BibTeX XML Cite \textit{Y. Ha} et al., SIAM J. Numer. Anal. 59, No. 1, 143--172 (2021; Zbl 07302950) Full Text: DOI
Abreu, E.; Matos, V.; Pérez, J.; Rodríguez-Bermúdez, P. A class of Lagrangian-Eulerian shock-capturing schemes for first-order hyperbolic problems with forcing terms. (English) Zbl 1456.65056 J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021). MSC: 65M06 65M12 35L65 35L45 76S05 76T06 76N10 76L05 76B15 PDF BibTeX XML Cite \textit{E. Abreu} et al., J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021; Zbl 1456.65056) Full Text: DOI
Zhang, Chao; Xu, Yan; Xia, Yinhua Local discontinuous Galerkin methods to a dispersive system of KdV-type equations. (English) Zbl 07301282 J. Sci. Comput. 86, No. 1, Paper No. 4, 43 p. (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 65M60 65N30 35C07 35C08 65L06 PDF BibTeX XML Cite \textit{C. Zhang} et al., J. Sci. Comput. 86, No. 1, Paper No. 4, 43 p. (2021; Zbl 07301282) Full Text: DOI
Kovyrkina, O. A.; Ostapenko, V. V. On accuracy of MUSCL type scheme when calculating discontinuous solutions. (Russian. English summary) Zbl 07292300 Mat. Model. 33, No. 1, 105-121 (2021). MSC: 76M20 76L05 65M12 PDF BibTeX XML Cite \textit{O. A. Kovyrkina} and \textit{V. V. Ostapenko}, Mat. Model. 33, No. 1, 105--121 (2021; Zbl 07292300) Full Text: DOI MNR
Krais, Nico; Beck, Andrea; Bolemann, Thomas; Frank, Hannes; Flad, David; Gassner, Gregor; Hindenlang, Florian; Hoffmann, Malte; Kuhn, Thomas; Sonntag, Matthias; Munz, Claus-Dieter FLEXI: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws. (English) Zbl 07288711 Comput. Math. Appl. 81, 186-219 (2021). MSC: 76 65 PDF BibTeX XML Cite \textit{N. Krais} et al., Comput. Math. Appl. 81, 186--219 (2021; Zbl 07288711) Full Text: DOI
Kriel, A. J. On the range diminishing property of numerical schemes for scalar conservation laws. (English) Zbl 1446.65090 J. Comput. Appl. Math. 381, Article ID 113013, 10 p. (2021). MSC: 65M08 PDF BibTeX XML Cite \textit{A. J. Kriel}, J. Comput. Appl. Math. 381, Article ID 113013, 10 p. (2021; Zbl 1446.65090) Full Text: DOI
Zhao, Zhuang; Chen, Yibing; Qiu, Jianxian A hybrid Hermite WENO scheme for hyperbolic conservation laws. (English) Zbl 1453.65264 J. Comput. Phys. 405, Article ID 109175, 22 p. (2020). MSC: 65M08 65M60 76M12 76M10 35L65 PDF BibTeX XML Cite \textit{Z. Zhao} et al., J. Comput. Phys. 405, Article ID 109175, 22 p. (2020; Zbl 1453.65264) Full Text: DOI
Uilhoorn, F. E. Numerical issues in gas flow dynamics with hydraulic shocks using high order finite volume WENO schemes. (English) Zbl 1453.76112 J. Comput. Phys. 404, Article ID 109137, 26 p. (2020). MSC: 76M12 65M08 76N15 76L05 PDF BibTeX XML Cite \textit{F. E. Uilhoorn}, J. Comput. Phys. 404, Article ID 109137, 26 p. (2020; Zbl 1453.76112) Full Text: DOI
Kozak, Y.; Dammati, S. S.; Bravo, L. G.; Hamlington, P. E.; Poludnenko, A. Y. WENO interpolation for Lagrangian particles in highly compressible flow regimes. (English) Zbl 1453.76165 J. Comput. Phys. 402, Article ID 109054, 24 p. (2020). MSC: 76M28 76V05 76N15 76L05 PDF BibTeX XML Cite \textit{Y. Kozak} et al., J. Comput. Phys. 402, Article ID 109054, 24 p. (2020; Zbl 1453.76165) Full Text: DOI
Latini, Marco; Schilling, Oleg A comparison of two- and three-dimensional single-mode reshocked Richtmyer-Meshkov instability growth. (English) Zbl 1453.76133 Physica D 401, Article ID 132201, 24 p. (2020). MSC: 76M20 76T17 76L05 PDF BibTeX XML Cite \textit{M. Latini} and \textit{O. Schilling}, Physica D 401, Article ID 132201, 24 p. (2020; Zbl 1453.76133) Full Text: DOI
Lin, Bo; Zhuang, Chijie; Cai, Zhenning; Zeng, Rong; Bao, Weizhu An efficient and accurate MPI-based parallel simulator for streamer discharges in three dimensions. (English) Zbl 1453.65255 J. Comput. Phys. 401, Article ID 109026, 19 p. (2020). MSC: 65M08 65M55 65Y05 65Z05 76X05 PDF BibTeX XML Cite \textit{B. Lin} et al., J. Comput. Phys. 401, Article ID 109026, 19 p. (2020; Zbl 1453.65255) Full Text: DOI
Fan, Haitao; Shu, Chi-Wang Existence and computation of solutions of a model of traffic involving hysteresis. (English) Zbl 1454.35235 SIAM J. Appl. Math. 80, No. 6, 2319-2337 (2020). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35L65 35L40 35D30 35C07 34C55 90B20 65Z05 65M06 65M12 60K30 76S05 PDF BibTeX XML Cite \textit{H. Fan} and \textit{C.-W. Shu}, SIAM J. Appl. Math. 80, No. 6, 2319--2337 (2020; Zbl 1454.35235) Full Text: DOI
Zhao, Zhuang; Zhang, Yong-Tao; Qiu, Jianxian A modified fifth order finite difference Hermite WENO scheme for hyperbolic conservation laws. (English) Zbl 1453.65241 J. Sci. Comput. 85, No. 2, Paper No. 29, 21 p. (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 35L65 65D05 PDF BibTeX XML Cite \textit{Z. Zhao} et al., J. Sci. Comput. 85, No. 2, Paper No. 29, 21 p. (2020; Zbl 1453.65241) Full Text: DOI
Bragin, M. D.; Rogov, B. V. On the accuracy of bicompact schemes as applied to computation of unsteady shock waves. (English. Russian original) Zbl 07264901 Comput. Math. Math. Phys. 60, No. 5, 864-878 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 5, 884-899 (2020). MSC: 76M20 76L05 76N15 65M12 PDF BibTeX XML Cite \textit{M. D. Bragin} and \textit{B. V. Rogov}, Comput. Math. Math. Phys. 60, No. 5, 864--878 (2020; Zbl 07264901); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 5, 884--899 (2020) Full Text: DOI
Panuelos, Jonathan; Wadsley, James; Kevlahan, Nicholas Low shear diffusion central schemes for particle methods. (English) Zbl 1440.76121 J. Comput. Phys. 414, Article ID 109454, 22 p. (2020). MSC: 76M28 76M12 35L65 65M08 PDF BibTeX XML Cite \textit{J. Panuelos} et al., J. Comput. Phys. 414, Article ID 109454, 22 p. (2020; Zbl 1440.76121) Full Text: DOI
Kumar, Anurag; Kaur, Bhavneet An improvement of third order WENO scheme for convergence rate at critical points with new non-linear weights. (English) Zbl 1453.65224 Differ. Equ. Dyn. Syst. 28, No. 3, 539-557 (2020). MSC: 65M06 65L06 65M12 35B33 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{B. Kaur}, Differ. Equ. Dyn. Syst. 28, No. 3, 539--557 (2020; Zbl 1453.65224) Full Text: DOI
Kuzmin, Dmitri; Quezada de Luna, Manuel Subcell flux limiting for high-order Bernstein finite element discretizations of scalar hyperbolic conservation laws. (English) Zbl 1436.65141 J. Comput. Phys. 411, Article ID 109411, 18 p. (2020). MSC: 65M60 65N30 35L65 PDF BibTeX XML Cite \textit{D. Kuzmin} and \textit{M. Quezada de Luna}, J. Comput. Phys. 411, Article ID 109411, 18 p. (2020; Zbl 1436.65141) Full Text: DOI
Denner, Fabian; Evrard, Fabien; van Wachem, Berend G. M. Conservative finite-volume framework and pressure-based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds. (English) Zbl 1435.76043 J. Comput. Phys. 409, Article ID 109348, 30 p. (2020). MSC: 76M12 76L05 PDF BibTeX XML Cite \textit{F. Denner} et al., J. Comput. Phys. 409, Article ID 109348, 30 p. (2020; Zbl 1435.76043) Full Text: DOI
Shiea, Mohsen; Buffo, Antonio; Vanni, Marco; Marchisio, Daniele L. A novel finite-volume TVD scheme to overcome non-realizability problem in quadrature-based moment methods. (English) Zbl 1435.76048 J. Comput. Phys. 409, Article ID 109337, 17 p. (2020). MSC: 76M12 PDF BibTeX XML Cite \textit{M. Shiea} et al., J. Comput. Phys. 409, Article ID 109337, 17 p. (2020; Zbl 1435.76048) Full Text: DOI
Ghassemi, Pedram; Anistratov, Dmitriy Y. Multilevel quasidiffusion method with mixed-order time discretization for multigroup thermal radiative transfer problems. (English) Zbl 1435.80010 J. Comput. Phys. 409, Article ID 109315, 21 p. (2020). MSC: 80A21 80M12 PDF BibTeX XML Cite \textit{P. Ghassemi} and \textit{D. Y. Anistratov}, J. Comput. Phys. 409, Article ID 109315, 21 p. (2020; Zbl 1435.80010) Full Text: DOI
Kanbar, F.; Touma, R.; Klingenberg, C. Well-balanced central schemes for the one and two-dimensional Euler systems with gravity. (English) Zbl 1442.65199 Appl. Numer. Math. 156, 608-626 (2020). MSC: 65M08 76B15 35Q31 35Q86 PDF BibTeX XML Cite \textit{F. Kanbar} et al., Appl. Numer. Math. 156, 608--626 (2020; Zbl 1442.65199) Full Text: DOI
Musa, Omer; Huang, Guoping; Yu, Zonghan; Li, Qian An improved Roe solver for high order reconstruction schemes. (English) Zbl 07211867 Comput. Fluids 207, Article ID 104591, 14 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{O. Musa} et al., Comput. Fluids 207, Article ID 104591, 14 p. (2020; Zbl 07211867) Full Text: DOI
Tann, Siengdy; Deng, Xi; Loubère, Raphaël; Xiao, Feng Solution property preserving reconstruction BVD+MOOD scheme for compressible Euler equations with source terms and detonations. (English) Zbl 07211861 Comput. Fluids 206, Article ID 104594, 17 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{S. Tann} et al., Comput. Fluids 206, Article ID 104594, 17 p. (2020; Zbl 07211861) Full Text: DOI
Iampietro, D.; Daude, F.; Galon, P. A low-diffusion self-adaptive flux-vector splitting approach for compressible flows. (English) Zbl 07211858 Comput. Fluids 206, Article ID 104586, 19 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{D. Iampietro} et al., Comput. Fluids 206, Article ID 104586, 19 p. (2020; Zbl 07211858) Full Text: DOI
Wen, Xiao; Don, Wai Sun; Gao, Zhen; Hesthaven, Jan S. An edge detector based on artificial neural network with application to hybrid compact-WENO finite difference scheme. (English) Zbl 1444.76077 J. Sci. Comput. 83, No. 3, Paper No. 49, 21 p. (2020). MSC: 76M20 76N15 76L05 76B15 92B20 PDF BibTeX XML Cite \textit{X. Wen} et al., J. Sci. Comput. 83, No. 3, Paper No. 49, 21 p. (2020; Zbl 1444.76077) Full Text: DOI
Renaud, Adrien; Heuzé, Thomas; Stainier, Laurent The discontinuous Galerkin material point method for variational hyperelastic-plastic solids. (English) Zbl 1442.74236 Comput. Methods Appl. Mech. Eng. 365, Article ID 112987, 24 p. (2020). MSC: 74S05 65M60 74B20 74C05 PDF BibTeX XML Cite \textit{A. Renaud} et al., Comput. Methods Appl. Mech. Eng. 365, Article ID 112987, 24 p. (2020; Zbl 1442.74236) Full Text: DOI
Kuzmin, Dmitri Monolithic convex limiting for continuous finite element discretizations of hyperbolic conservation laws. (English) Zbl 1442.65263 Comput. Methods Appl. Mech. Eng. 361, Article ID 112804, 28 p. (2020). MSC: 65M60 70S10 PDF BibTeX XML Cite \textit{D. Kuzmin}, Comput. Methods Appl. Mech. Eng. 361, Article ID 112804, 28 p. (2020; Zbl 1442.65263) Full Text: DOI
Frank, Florian; Rupp, Andreas; Kuzmin, Dmitri Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation. (English) Zbl 1441.76059 Comput. Methods Appl. Mech. Eng. 359, Article ID 112665, 25 p. (2020). MSC: 76M10 65M60 PDF BibTeX XML Cite \textit{F. Frank} et al., Comput. Methods Appl. Mech. Eng. 359, Article ID 112665, 25 p. (2020; Zbl 1441.76059) Full Text: DOI
ten Eikelder, M. F. P.; Bazilevs, Y.; Akkerman, I. A theoretical framework for discontinuity capturing: joining variational multiscale analysis and variation entropy theory. (English) Zbl 1441.49016 Comput. Methods Appl. Mech. Eng. 359, Article ID 112664, 29 p. (2020). MSC: 49J40 35L65 65Z05 PDF BibTeX XML Cite \textit{M. F. P. ten Eikelder} et al., Comput. Methods Appl. Mech. Eng. 359, Article ID 112664, 29 p. (2020; Zbl 1441.49016) Full Text: DOI
Deng, Xi; Jiang, Zhen-Hua; Xiao, Feng; Yan, Chao Implicit large eddy simulation of compressible turbulence flow with \(\mathrm{P}_n\mathrm{T}_m-\mathrm{BVD}\) scheme. (English) Zbl 1450.76018 Appl. Math. Modelling 77, Part 1, 17-31 (2020). MSC: 76F65 76M12 76F50 76L05 PDF BibTeX XML Cite \textit{X. Deng} et al., Appl. Math. Modelling 77, Part 1, 17--31 (2020; Zbl 1450.76018) Full Text: DOI
Bhoriya, Deepak; Kumar, Harish Entropy-stable schemes for relativistic hydrodynamics equations. (English) Zbl 1431.65139 Z. Angew. Math. Phys. 71, No. 1, Paper No. 29, 29 p. (2020). MSC: 65M08 65M12 76M20 35Q35 PDF BibTeX XML Cite \textit{D. Bhoriya} and \textit{H. Kumar}, Z. Angew. Math. Phys. 71, No. 1, Paper No. 29, 29 p. (2020; Zbl 1431.65139) Full Text: DOI
Moradi, A.; Abdi, A.; Farzi, J. Strong stability preserving second derivative diagonally implicit multistage integration methods. (English) Zbl 1439.65077 Appl. Numer. Math. 150, 536-558 (2020). MSC: 65L05 65D25 65D30 65L20 65N06 37M21 PDF BibTeX XML Cite \textit{A. Moradi} et al., Appl. Numer. Math. 150, 536--558 (2020; Zbl 1439.65077) Full Text: DOI
Kriel, A. J. Entropy inequalities for fully-discrete E-schemes. (English) Zbl 1433.65177 Numer. Math. 144, No. 2, 347-356 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 35L45 35L65 65M12 PDF BibTeX XML Cite \textit{A. J. Kriel}, Numer. Math. 144, No. 2, 347--356 (2020; Zbl 1433.65177) Full Text: DOI
Bai, Zeyu; Zhong, Xiaolin A new very high-order upwind directional multi-layer compact (DMLC) scheme for multi-dimensional flows. (English) Zbl 07149124 Comput. Fluids 197, Article ID 104356, 29 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{Z. Bai} and \textit{X. Zhong}, Comput. Fluids 197, Article ID 104356, 29 p. (2020; Zbl 07149124) Full Text: DOI
Ha, Cong-Tu; Lee, Jae Hwa A modified monotonicity-preserving high-order scheme with application to computation of multi-phase flows. (English) Zbl 07149119 Comput. Fluids 197, Article ID 104345, 29 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{C.-T. Ha} and \textit{J. H. Lee}, Comput. Fluids 197, Article ID 104345, 29 p. (2020; Zbl 07149119) Full Text: DOI
Zhang, Guiyong; Hui, Da; Li, Da; Zou, Li; Jiang, Shengchao; Zong, Zhi A new TVD scheme for gradient smoothing method using unstructured grids. (English) Zbl 07136602 Int. J. Comput. Methods 17, No. 3, Article ID 1850132, 24 p. (2020). MSC: 65 76 PDF BibTeX XML Cite \textit{G. Zhang} et al., Int. J. Comput. Methods 17, No. 3, Article ID 1850132, 24 p. (2020; Zbl 07136602) Full Text: DOI
Palmore, John; Desjardins, Olivier A volume of fluid framework for interface-resolved simulations of vaporizing liquid-gas flows. (English) Zbl 1453.76215 J. Comput. Phys. 399, Article ID 108954, 26 p. (2019). MSC: 76T10 80A22 76M12 76M20 65M08 PDF BibTeX XML Cite \textit{J. Palmore} and \textit{O. Desjardins}, J. Comput. Phys. 399, Article ID 108954, 26 p. (2019; Zbl 1453.76215) Full Text: DOI
Mazaheri, Alireza; Shu, Chi-Wang; Perrier, Vincent Bounded and compact weighted essentially nonoscillatory limiters for discontinuous Galerkin schemes: triangular elements. (English) Zbl 1452.76097 J. Comput. Phys. 395, 461-488 (2019). MSC: 76M10 76N15 65M60 PDF BibTeX XML Cite \textit{A. Mazaheri} et al., J. Comput. Phys. 395, 461--488 (2019; Zbl 1452.76097) Full Text: DOI
Upperman, Johnathon; Yamaleev, Nail K. Entropy stable artificial dissipation based on Brenner regularization of the Navier-Stokes equations. (English) Zbl 1452.76170 J. Comput. Phys. 393, 74-91 (2019). MSC: 76M22 65M70 76N06 PDF BibTeX XML Cite \textit{J. Upperman} and \textit{N. K. Yamaleev}, J. Comput. Phys. 393, 74--91 (2019; Zbl 1452.76170) Full Text: DOI
Zhu, Jun; Shu, Chi-Wang A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. (English) Zbl 1452.76143 J. Comput. Phys. 392, 19-33 (2019). MSC: 76M12 65M08 35L65 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{C.-W. Shu}, J. Comput. Phys. 392, 19--33 (2019; Zbl 1452.76143) Full Text: DOI
Deng, Xi; Shimizu, Yuya; Xiao, Feng A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm. (English) Zbl 1452.76113 J. Comput. Phys. 386, 323-349 (2019). MSC: 76M12 65M08 76L05 35L65 76N15 PDF BibTeX XML Cite \textit{X. Deng} et al., J. Comput. Phys. 386, 323--349 (2019; Zbl 1452.76113) Full Text: DOI
Vevek, U. S.; Zang, B.; New, T. H. Adaptive mapping for high order WENO methods. (English) Zbl 1451.65123 J. Comput. Phys. 381, 162-188 (2019). MSC: 65M08 35L65 65M50 76L05 PDF BibTeX XML Cite \textit{U. S. Vevek} et al., J. Comput. Phys. 381, 162--188 (2019; Zbl 1451.65123) Full Text: DOI
Velechovsky, Jan; Francois, Marianne; Masser, Thomas Direction-aware slope limiter for three-dimensional cubic grids with adaptive mesh refinement. (English) Zbl 1442.65207 Comput. Math. Appl. 78, No. 2, 670-687 (2019). MSC: 65M08 76M12 PDF BibTeX XML Cite \textit{J. Velechovsky} et al., Comput. Math. Appl. 78, No. 2, 670--687 (2019; Zbl 1442.65207) Full Text: DOI
Abreu, Eduardo; Pérez, John A fast, robust, and simple Lagrangian-Eulerian solver for balance laws and applications. (English) Zbl 1442.65188 Comput. Math. Appl. 77, No. 9, 2310-2336 (2019). MSC: 65M08 35L45 35L60 35L65 76M12 PDF BibTeX XML Cite \textit{E. Abreu} and \textit{J. Pérez}, Comput. Math. Appl. 77, No. 9, 2310--2336 (2019; Zbl 1442.65188) Full Text: DOI
Ladonkina, M. E.; Nekliudova, O. A.; Ostapenko, V. V.; Tishkin, V. F. Combined DG scheme that maintains increased accuracy in shock wave areas. (English. Russian original) Zbl 1444.76085 Dokl. Math. 100, No. 3, 519-523 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 489, No. 2, 119-124 (2019). MSC: 76M99 76M20 76L05 PDF BibTeX XML Cite \textit{M. E. Ladonkina} et al., Dokl. Math. 100, No. 3, 519--523 (2019; Zbl 1444.76085); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 489, No. 2, 119--124 (2019) Full Text: DOI
ten Eikelder, M. F. P.; Akkerman, I. Variation entropy: a continuous local generalization of the TVD property using entropy principles. (English) Zbl 1441.65083 Comput. Methods Appl. Mech. Eng. 355, 261-283 (2019). MSC: 65M99 26B30 35L65 PDF BibTeX XML Cite \textit{M. F. P. ten Eikelder} and \textit{I. Akkerman}, Comput. Methods Appl. Mech. Eng. 355, 261--283 (2019; Zbl 1441.65083) Full Text: DOI
Ahn, Myeong-Hwan; Lee, Duck-Joo Hybrid flux method in monotonicity-preserving scheme for accurate and robust simulation in supersonic flow. (English) Zbl 1435.76032 Math. Probl. Eng. 2019, Article ID 4590956, 19 p. (2019). MSC: 76J20 65M08 76M12 PDF BibTeX XML Cite \textit{M.-H. Ahn} and \textit{D.-J. Lee}, Math. Probl. Eng. 2019, Article ID 4590956, 19 p. (2019; Zbl 1435.76032) Full Text: DOI
Grant, Zachary; Gottlieb, Sigal; Seal, David C. A strong stability preserving analysis for explicit multistage two-derivative time-stepping schemes based on Taylor series conditions. (English) Zbl 1449.65223 Commun. Appl. Math. Comput. 1, No. 1, 21-59 (2019). MSC: 65M20 65M12 65L06 65L20 65N06 65K10 PDF BibTeX XML Cite \textit{Z. Grant} et al., Commun. Appl. Math. Comput. 1, No. 1, 21--59 (2019; Zbl 1449.65223) Full Text: DOI
Brushlinskii, K. V.; Stepin, E. V. Numerical model of compression plasma flows in channels under a longitudinal magnetic field. (English. Russian original) Zbl 1425.76317 Differ. Equ. 55, No. 7, 894-904 (2019); translation from Differ. Uravn. 55, No. 7, 929-939 (2019). MSC: 76X05 76W05 76M20 65M06 PDF BibTeX XML Cite \textit{K. V. Brushlinskii} and \textit{E. V. Stepin}, Differ. Equ. 55, No. 7, 894--904 (2019; Zbl 1425.76317); translation from Differ. Uravn. 55, No. 7, 929--939 (2019) Full Text: DOI
Wang, Yahui; Du, Yulong; Zhao, Kunlei; Yuan, Li Modified stencil approximations for fifth-order weighted essentially non-oscillatory schemes. (English) Zbl 1427.65192 J. Sci. Comput. 81, No. 2, 898-922 (2019). MSC: 65M06 65M12 76L05 41A10 35L65 35Q31 35B38 65L06 76T99 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Sci. Comput. 81, No. 2, 898--922 (2019; Zbl 1427.65192) Full Text: DOI
Bohm, Marvin; Schermeng, Sven; Winters, Andrew R.; Gassner, Gregor J.; Jacobs, Gustaaf B. Multi-element SIAC filter for shock capturing applied to high-order discontinuous Galerkin spectral element methods. (English) Zbl 1427.65282 J. Sci. Comput. 81, No. 2, 820-844 (2019). MSC: 65M70 65Z05 35L67 35L65 65M60 35Q31 76W05 76L05 65D32 65L06 PDF BibTeX XML Cite \textit{M. Bohm} et al., J. Sci. Comput. 81, No. 2, 820--844 (2019; Zbl 1427.65282) Full Text: DOI arXiv
Vevek, U. S.; Zang, B.; New, T. H. An efficient hybrid method for solving Euler equations. (English) Zbl 1433.65167 J. Sci. Comput. 81, No. 2, 732-762 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 35L65 65M12 35Q31 65M08 76L05 PDF BibTeX XML Cite \textit{U. S. Vevek} et al., J. Sci. Comput. 81, No. 2, 732--762 (2019; Zbl 1433.65167) Full Text: DOI
Moradi, Afsaneh; Farzi, Javad; Abdi, Ali Strong stability preserving second derivative general linear methods. (English) Zbl 1427.65110 J. Sci. Comput. 81, No. 1, 392-435 (2019). MSC: 65L05 65L06 34A34 65L60 65L20 65L50 PDF BibTeX XML Cite \textit{A. Moradi} et al., J. Sci. Comput. 81, No. 1, 392--435 (2019; Zbl 1427.65110) Full Text: DOI
Ren, Jiong; Wang, Gang; Ma, Mingsheng A group of CFL-dependent flux-limiters to control the numerical dissipation in multi-stage unsteady calculation. (English) Zbl 1427.65211 J. Sci. Comput. 81, No. 1, 186-216 (2019). MSC: 65M08 76N15 65M15 35L65 65M20 35L02 65L06 35Q31 76J20 76L05 PDF BibTeX XML Cite \textit{J. Ren} et al., J. Sci. Comput. 81, No. 1, 186--216 (2019; Zbl 1427.65211) Full Text: DOI
Keser, Robert; Vukčević, Vuko; Battistoni, Michele; Im, Hong; Jasak, Hrvoje Implicitly coupled phase fraction equations for the Eulerian multi-fluid model. (English) Zbl 07127231 Comput. Fluids 192, Article ID 104277, 14 p. (2019). MSC: 76 PDF BibTeX XML Cite \textit{R. Keser} et al., Comput. Fluids 192, Article ID 104277, 14 p. (2019; Zbl 07127231) Full Text: DOI
Liu, Yilang; Zhang, Weiwei; Zheng, Xiaobo An accuracy preserving limiter for the high-order discontinuous Galerkin method on unstructured grids. (English) Zbl 07127216 Comput. Fluids 192, Article ID 104253, 7 p. (2019). MSC: 76 PDF BibTeX XML Cite \textit{Y. Liu} et al., Comput. Fluids 192, Article ID 104253, 7 p. (2019; Zbl 07127216) Full Text: DOI
Karami, Shahram; Stegeman, Paul C.; Ooi, Andrew; Soria, Julio High-order accurate large-eddy simulations of compressible viscous flow in cylindrical coordinates. (English) Zbl 07124554 Comput. Fluids 191, Article ID 104241, 14 p. (2019). MSC: 76 74 PDF BibTeX XML Cite \textit{S. Karami} et al., Comput. Fluids 191, Article ID 104241, 14 p. (2019; Zbl 07124554) Full Text: DOI
Margolin, Len; Plesko, Catherine Discrete regularization. (English) Zbl 1425.74251 Evol. Equ. Control Theory 8, No. 1, 117-137 (2019). MSC: 74J30 76N15 80A20 35M30 PDF BibTeX XML Cite \textit{L. Margolin} and \textit{C. Plesko}, Evol. Equ. Control Theory 8, No. 1, 117--137 (2019; Zbl 1425.74251) Full Text: DOI
Yousefi, Hassan; Rabczuk, Timon Multiresolution-based adaptive central high resolution schemes for modeling of nonlinear propagating fronts. (English) Zbl 07110315 Eng. Anal. Bound. Elem. 103, 172-195 (2019). MSC: 65 76 PDF BibTeX XML Cite \textit{H. Yousefi} and \textit{T. Rabczuk}, Eng. Anal. Bound. Elem. 103, 172--195 (2019; Zbl 07110315) Full Text: DOI
Ridder, J.; Ruf, A. M. A convergent finite difference scheme for the Ostrovsky-Hunter equation with Dirichlet boundary conditions. (English) Zbl 1433.65165 BIT 59, No. 3, 775-796 (2019). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M06 35M33 35L35 35Q35 65M12 76U60 86A05 PDF BibTeX XML Cite \textit{J. Ridder} and \textit{A. M. Ruf}, BIT 59, No. 3, 775--796 (2019; Zbl 1433.65165) Full Text: DOI
Afonina, N. E.; Gromov, V. G.; Levin, V. A.; Manuilovich, I. S.; Markov, V. V.; Khmelevskij, A. N. Investigation of the spectral composition of the gas pressure and thrust pulsations in nozzles equipped with a deflector. (English. Russian original) Zbl 1421.76261 Fluid Dyn. 54, No. 3, 414-427 (2019); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2019, No. 3, 123-137 (2019). MSC: 76V05 76M12 76-05 PDF BibTeX XML Cite \textit{N. E. Afonina} et al., Fluid Dyn. 54, No. 3, 414--427 (2019; Zbl 1421.76261); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2019, No. 3, 123--137 (2019) Full Text: DOI
Yousefi, Hassan; Mohammadi, Soheil; Rabczuk, Timon Multiscale polynomial-based high-order central high resolution schemes. (English) Zbl 1450.65091 J. Sci. Comput. 80, No. 1, 555-613 (2019). MSC: 65M06 65M12 65D05 65M50 PDF BibTeX XML Cite \textit{H. Yousefi} et al., J. Sci. Comput. 80, No. 1, 555--613 (2019; Zbl 1450.65091) Full Text: DOI
Cheng, Ziqiang; Liu, Yuan; Zhang, Mengping; Wang, Jin IB-WENO method for incompressible flow with elastic boundaries. (English) Zbl 07085942 J. Comput. Appl. Math. 362, 498-509 (2019). MSC: 76 74 PDF BibTeX XML Cite \textit{Z. Cheng} et al., J. Comput. Appl. Math. 362, 498--509 (2019; Zbl 07085942) Full Text: DOI
Grosheintz-Laval, L.; Käppeli, R. High-order well-balanced finite volume schemes for the Euler equations with gravitation. (English) Zbl 1416.65266 J. Comput. Phys. 378, 324-343 (2019). MSC: 65M06 35Q31 85A30 76M12 PDF BibTeX XML Cite \textit{L. Grosheintz-Laval} and \textit{R. Käppeli}, J. Comput. Phys. 378, 324--343 (2019; Zbl 1416.65266) Full Text: DOI
Bai, Zeyu; Zhong, Xiaolin New very high-order upwind multi-layer compact (MLC) schemes with spectral-like resolution for flow simulations. (English) Zbl 1416.76170 J. Comput. Phys. 378, 63-109 (2019). MSC: 76M20 76K05 76N15 PDF BibTeX XML Cite \textit{Z. Bai} and \textit{X. Zhong}, J. Comput. Phys. 378, 63--109 (2019; Zbl 1416.76170) Full Text: DOI
So, R. M. C.; Leung, R. C. K.; Kam, E. W. S.; Fu, S. C. Progress in the development of a new lattice Boltzmann method. (English) Zbl 07083222 Comput. Fluids 190, 440-469 (2019). MSC: 76 PDF BibTeX XML Cite \textit{R. M. C. So} et al., Comput. Fluids 190, 440--469 (2019; Zbl 07083222) Full Text: DOI
Zeng, Xianyi Linear hybrid-variable methods for advection equations. (English) Zbl 1415.65212 Adv. Comput. Math. 45, No. 2, 929-980 (2019). MSC: 65M12 35L45 65D25 PDF BibTeX XML Cite \textit{X. Zeng}, Adv. Comput. Math. 45, No. 2, 929--980 (2019; Zbl 1415.65212) Full Text: DOI
Todorova, Blaga N.; Steijl, René Derivation and numerical comparison of Shakhov and ellipsoidal statistical kinetic models for a monoatomic gas mixture. (English) Zbl 07073386 Eur. J. Mech., B, Fluids 76, 390-402 (2019). MSC: 76 PDF BibTeX XML Cite \textit{B. N. Todorova} and \textit{R. Steijl}, Eur. J. Mech., B, Fluids 76, 390--402 (2019; Zbl 07073386) Full Text: DOI
Vevek, U. S.; Zang, B.; New, T. H. On alternative setups of the double Mach reflection problem. (English) Zbl 1417.65161 J. Sci. Comput. 78, No. 2, 1291-1303 (2019). MSC: 65M08 65L06 35Q31 76L05 76M12 PDF BibTeX XML Cite \textit{U. S. Vevek} et al., J. Sci. Comput. 78, No. 2, 1291--1303 (2019; Zbl 1417.65161) Full Text: DOI
Hader, Christoph; Fasel, Hermann F. Direct numerical simulations of hypersonic boundary-layer transition for a flared cone: fundamental breakdown. (English) Zbl 1415.76270 J. Fluid Mech. 869, 341-384 (2019). MSC: 76F06 76N20 76F65 PDF BibTeX XML Cite \textit{C. Hader} and \textit{H. F. Fasel}, J. Fluid Mech. 869, 341--384 (2019; Zbl 1415.76270) Full Text: DOI
Zhao, Zhuang; Zhu, Jun; Chen, Yibing; Qiu, Jianxian A new hybrid WENO scheme for hyperbolic conservation laws. (English) Zbl 1411.76110 Comput. Fluids 179, 422-436 (2019). MSC: 76M20 65M06 35L65 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Comput. Fluids 179, 422--436 (2019; Zbl 1411.76110) Full Text: DOI
Lodato, Guido Characteristic modal shock detection for discontinuous finite element methods. (English) Zbl 1411.76067 Comput. Fluids 179, 309-333 (2019); corrigendum ibid. 193, Article ID 104245, 1p. (2019). MSC: 76M10 65M60 76L05 PDF BibTeX XML Cite \textit{G. Lodato}, Comput. Fluids 179, 309--333 (2019; Zbl 1411.76067) Full Text: DOI
Giuliani, Andrew; Krivodonova, Lilia A moment limiter for the discontinuous Galerkin method on unstructured triangular meshes. (English) Zbl 1414.65020 SIAM J. Sci. Comput. 41, No. 1, A508-A537 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 65M60 PDF BibTeX XML Cite \textit{A. Giuliani} and \textit{L. Krivodonova}, SIAM J. Sci. Comput. 41, No. 1, A508--A537 (2019; Zbl 1414.65020) Full Text: DOI
Wang, Sulin; Xu, Zhengfu Total variation bounded flux limiters for high order finite difference schemes solving one-dimensional scalar conservation laws. (English) Zbl 06989561 Math. Comput. 88, No. 316, 691-716 (2019). MSC: 65M06 65M12 35L65 PDF BibTeX XML Cite \textit{S. Wang} and \textit{Z. Xu}, Math. Comput. 88, No. 316, 691--716 (2019; Zbl 06989561) Full Text: DOI
Pitt, Jordan P. A.; Zoppou, Christopher; Roberts, Stephen G. Behaviour of the Serre equations in the presence of steep gradients revisited. (English) Zbl 07213206 Wave Motion 76, 61-77 (2018). MSC: 35 76 PDF BibTeX XML Cite \textit{J. P. A. Pitt} et al., Wave Motion 76, 61--77 (2018; Zbl 07213206) Full Text: DOI
Mingalev, I. V.; Mingalev, O. V.; Ahmetov, O. I.; Suvorova, Z. V. The explicit splitting scheme for Maxwell’s equations. (Russian. English summary) Zbl 1449.78012 Mat. Model. 30, No. 12, 17-38 (2018). MSC: 78M20 65M06 35Q60 35Q83 PDF BibTeX XML Cite \textit{I. V. Mingalev} et al., Mat. Model. 30, No. 12, 17--38 (2018; Zbl 1449.78012) Full Text: MNR
Zhu, Jun; Shu, Chi-Wang A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. (English) Zbl 1416.65286 J. Comput. Phys. 375, 659-683 (2018). MSC: 65M06 65M08 76M12 76M20 35L65 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{C.-W. Shu}, J. Comput. Phys. 375, 659--683 (2018; Zbl 1416.65286) Full Text: DOI
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws. (English) Zbl 1416.65262 J. Comput. Phys. 374, 724-751 (2018). MSC: 65M06 35L65 76M20 76L05 PDF BibTeX XML Cite \textit{L. Fu} et al., J. Comput. Phys. 374, 724--751 (2018; Zbl 1416.65262) Full Text: DOI
Giuliani, Andrew; Krivodonova, Lilia Analysis of slope limiters on unstructured triangular meshes. (English) Zbl 1416.65350 J. Comput. Phys. 374, 1-26 (2018). MSC: 65M60 76M10 65M50 PDF BibTeX XML Cite \textit{A. Giuliani} and \textit{L. Krivodonova}, J. Comput. Phys. 374, 1--26 (2018; Zbl 1416.65350) Full Text: DOI
Dubey, Ritesh Kumar; Biswas, Biswarup Suitable diffusion for constructing non-oscillatory entropy stable schemes. (English) Zbl 1415.65211 J. Comput. Phys. 372, 912-930 (2018). MSC: 65M12 35L65 76L05 PDF BibTeX XML Cite \textit{R. K. Dubey} and \textit{B. Biswas}, J. Comput. Phys. 372, 912--930 (2018; Zbl 1415.65211) Full Text: DOI
Ji, Xing; Pan, Liang; Shyy, Wei; Xu, Kun A compact fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations. (English) Zbl 1415.76470 J. Comput. Phys. 372, 446-472 (2018). MSC: 76M12 76N15 PDF BibTeX XML Cite \textit{X. Ji} et al., J. Comput. Phys. 372, 446--472 (2018; Zbl 1415.76470) Full Text: DOI
Denner, Fabian; Xiao, Cheng-Nian; van Wachem, Berend G. M. Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation. (English) Zbl 1415.76466 J. Comput. Phys. 367, 192-234 (2018); corrigendum ibid. 381, 290-291 (2019). MSC: 76M12 76N15 76T99 76Q05 PDF BibTeX XML Cite \textit{F. Denner} et al., J. Comput. Phys. 367, 192--234 (2018; Zbl 1415.76466) Full Text: DOI
Maciel, Edisson Sávio de Góes; de Andrade, Cláudia Regina Comparison among unstructured TVD, ENO and UNO schemes in two- and three-dimensions. (English) Zbl 1426.76400 Appl. Math. Comput. 321, 130-175 (2018). MSC: 76M12 65M08 76Bxx 76M20 76L05 65M06 PDF BibTeX XML Cite \textit{E. S. de G. Maciel} and \textit{C. R. de Andrade}, Appl. Math. Comput. 321, 130--175 (2018; Zbl 1426.76400) Full Text: DOI
Vimercati, Davide; Guardone, Alberto On the numerical simulation of non-classical quasi-1D steady nozzle flows: capturing sonic shocks. (English) Zbl 1426.76658 Appl. Math. Comput. 319, 617-632 (2018). MSC: 76N15 65M06 76M20 PDF BibTeX XML Cite \textit{D. Vimercati} and \textit{A. Guardone}, Appl. Math. Comput. 319, 617--632 (2018; Zbl 1426.76658) Full Text: DOI
Rathan, Samala; Naga Raju, G. A modified fifth-order WENO scheme for hyperbolic conservation laws. (English) Zbl 1409.65056 Comput. Math. Appl. 75, No. 5, 1531-1549 (2018). MSC: 65M06 65M12 35L45 PDF BibTeX XML Cite \textit{S. Rathan} and \textit{G. Naga Raju}, Comput. Math. Appl. 75, No. 5, 1531--1549 (2018; Zbl 1409.65056) Full Text: DOI arXiv
Joshi, Vaibhav; Jaiman, Rajeev K. An adaptive variational procedure for the conservative and positivity preserving Allen-Cahn phase-field model. (English) Zbl 1406.76049 J. Comput. Phys. 366, 478-504 (2018). MSC: 76M10 76M30 76T99 76D05 PDF BibTeX XML Cite \textit{V. Joshi} and \textit{R. K. Jaiman}, J. Comput. Phys. 366, 478--504 (2018; Zbl 1406.76049) Full Text: DOI
Prebeg, Marin; Flåtten, Tore; Müller, Bernhard Large time step HLL and HLLC schemes. (English) Zbl 1417.65160 ESAIM, Math. Model. Numer. Anal. 52, No. 4, 1239-1260 (2018). Reviewer: Kai Schneider (Marseille) MSC: 65M08 35L65 65Y20 35Q31 PDF BibTeX XML Cite \textit{M. Prebeg} et al., ESAIM, Math. Model. Numer. Anal. 52, No. 4, 1239--1260 (2018; Zbl 1417.65160) Full Text: DOI
Herty, Michael; Fazekas, Adrian; Visconti, Giuseppe A two-dimensional data-driven model for traffic flow on highways. (English) Zbl 1405.90044 Netw. Heterog. Media 13, No. 2, 217-240 (2018). MSC: 90B20 35L65 35Q91 91B74 PDF BibTeX XML Cite \textit{M. Herty} et al., Netw. Heterog. Media 13, No. 2, 217--240 (2018; Zbl 1405.90044) Full Text: DOI arXiv
Zyuzina, N. A.; Kovyrkina, O. A.; Ostapenko, V. V. Monotone finite-difference scheme preserving high accuracy in regions of shock influence. (English. Russian original) Zbl 1407.65137 Dokl. Math. 98, No. 2, 506-510 (2018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 482, No. 6, 639-643 (2018). MSC: 65M06 35Q35 76L05 35L67 PDF BibTeX XML Cite \textit{N. A. Zyuzina} et al., Dokl. Math. 98, No. 2, 506--510 (2018; Zbl 1407.65137); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 482, No. 6, 639--643 (2018) Full Text: DOI
Tunik, Yu. V. Numerical solution of test problems using a modified Godunov scheme. (English. Russian original) Zbl 1448.76133 Comput. Math. Math. Phys. 58, No. 10, 1573-1584 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 10 (2018). MSC: 76N15 35Q31 76M12 PDF BibTeX XML Full Text: DOI
Kovyrkina, O. A.; Ostapenko, V. V. Monotonicity of the CABARET scheme approximating a hyperbolic system of conservation laws. (English. Russian original) Zbl 1448.35332 Comput. Math. Math. Phys. 58, No. 9, 1435-1450 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 9 (2018). MSC: 35L65 65M06 35Q35 PDF BibTeX XML Full Text: DOI
Ladonkina, M. E.; Neklyudova, O. A.; Ostapenko, V. V.; Tishkin, V. F. On the accuracy of the discontinuous Galerkin method in calculation of shock waves. (English. Russian original) Zbl 1412.76056 Comput. Math. Math. Phys. 58, No. 8, 1344-1353 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 8 (2018). MSC: 76L05 76M10 65M60 35L65 PDF BibTeX XML Full Text: DOI
Kholodov, Ya. A.; Kholodov, A. S.; Tsybulin, I. V. Construction of monotone difference schemes for systems of hyperbolic equations. (English. Russian original) Zbl 1407.65110 Comput. Math. Math. Phys. 58, No. 8, 1226-1246 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 8 (2018). MSC: 65M06 35L02 35L60 PDF BibTeX XML Full Text: DOI
Chen, Shu-Sheng; Yan, Chao; Lin, Bo-Xi; Li, Yan-Su A new robust carbuncle-free Roe scheme for strong shock. (English) Zbl 06993325 J. Sci. Comput. 77, No. 2, 1250-1277 (2018). MSC: 65 PDF BibTeX XML Cite \textit{S.-S. Chen} et al., J. Sci. Comput. 77, No. 2, 1250--1277 (2018; Zbl 06993325) Full Text: DOI
Isherwood, Leah; Grant, Zachary J.; Gottlieb, Sigal Strong stability preserving integrating factor Runge-Kutta methods. (English) Zbl 1404.65064 SIAM J. Numer. Anal. 56, No. 6, 3276-3307 (2018). MSC: 65L06 65L05 34A34 65L20 PDF BibTeX XML Cite \textit{L. Isherwood} et al., SIAM J. Numer. Anal. 56, No. 6, 3276--3307 (2018; Zbl 1404.65064) Full Text: DOI
Guo, Yan; Shi, YuFeng Seventh order compact-WENO scheme for hyperbolic conservation laws. (English) Zbl 1410.76230 Comput. Fluids 176, 193-209 (2018). MSC: 76M12 65M08 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{Y. Shi}, Comput. Fluids 176, 193--209 (2018; Zbl 1410.76230) Full Text: DOI
Wang, B. S.; Don, W. S.; Gao, Z.; Wang, Y. H.; Wen, X. Hybrid compact-WENO finite difference scheme with radial basis function based shock detection method for hyperbolic conservation laws. (English) Zbl 1406.65065 SIAM J. Sci. Comput. 40, No. 6, A3699-A3714 (2018). MSC: 65M06 35L65 35L67 35Q31 PDF BibTeX XML Cite \textit{B. S. Wang} et al., SIAM J. Sci. Comput. 40, No. 6, A3699--A3714 (2018; Zbl 1406.65065) Full Text: DOI
Simon, Sangeeth; Mandal, J. C. A cure for numerical shock instability in HLLC Riemann solver using antidiffusion control. (English) Zbl 1410.76334 Comput. Fluids 174, 144-166 (2018). MSC: 76M25 65M25 76L05 PDF BibTeX XML Cite \textit{S. Simon} and \textit{J. C. Mandal}, Comput. Fluids 174, 144--166 (2018; Zbl 1410.76334) Full Text: DOI