×

zbMATH — the first resource for mathematics

Hypersurfaces of the flag variety: Deformation theory and the theorems of Kodaira-Spencer, Torelli, Lefschetz, M. Noether and Serre. (English) Zbl 0662.14029
Let \(X\) denote a smooth hypersurface in the full flag manifold \({\mathbb{F}}\subseteq {\mathbb{P}}^ n_{{\mathbb{C}}}\). The author proves that any small deformation of \(X\) is again a hypersurface of \({\mathbb{F}}\) provided the degree of \(X\) is at least 2 (3 if \(n=2\)).
He also obtains a generalization of the classical Lefschetz theorem saying that \(\pi_ i({\mathbb{F}},X)=H_ i({\mathbb{F}},X)=0\) for \(i\leq \dim(X)-p\), where \(p\) is computable from the degree of the embedding \(X\in {\mathbb{F}}\). When \(n=3\), the author shows that the Picard number of \(X\) is 2, and as a consequence, every curve on \(X\) is in this case the variety of a global section of a 2-bundle on \({\mathbb{F}}\).
Reviewer: H.H.Andersen

MSC:
14M15 Grassmannians, Schubert varieties, flag manifolds
14D15 Formal methods and deformations in algebraic geometry
14J10 Families, moduli, classification: algebraic theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bott, R.: Homogeneous vector bundles. Ann. Math.66, 203-248 (1957) · Zbl 0094.35701 · doi:10.2307/1969996
[2] Carlson, J., Green, M., Griffiths, P., Harris, J.: Infinitesimal variations of Hodge structure (I). Comp. Math.50, 109-205 (1983) · Zbl 0531.14006
[3] Demazure, M.: A very simple proof of Bott’s theorem. Invent. Math.33, 271-272 (1976) · Zbl 0383.14017 · doi:10.1007/BF01404206
[4] Ein, L.: An analogue of Max Noether’s theorem. Duke Math. J.52, 689-706 (1985) · Zbl 0589.14034 · doi:10.1215/S0012-7094-85-05235-4
[5] Elencwajg, G.: Les fibrés uniformes de rang 3 sur ?2 sont homogènes. Math. Ann.231, 217-227 (1978) · Zbl 0378.14003 · doi:10.1007/BF01420242
[6] Faltings, G.: Formale Geometrie und homogene Räume. Invent. Math.64, 123-165 (1981) · Zbl 0459.14010 · doi:10.1007/BF01393937
[7] Flenner, H.: The infinitesimal Torelli problem for zero sets of sections of vector bundles. Math. Z.193, 307-322 (1986) · Zbl 0613.14010 · doi:10.1007/BF01174340
[8] Griffiths, P.: Periods of integrals on algebraic manifolds, II. Am. J. Math.90, 804-865 (1968) · Zbl 0183.25501
[9] Grothendieck, A.: Quelques problèmes de modules. Sém. H. Cartan, 1960/61, no 16 · Zbl 0234.14007
[10] Kurke, H., Theel, H.: Some examples of vector bundles on the flag variety \(\mathbb{F}(1,2)\) . Algebraic geometry. Proceedings. Bucharest 1982. Lect. notes in math. 1056. Berlin Heidelberg New York: Springer (1984) · Zbl 0559.14007
[11] Schuster, H.: Formale Deformationstheorien. Habilitationsschrift, München 1971
[12] Wavrik, J.: A theorem on completeness for families of compact analytic spaces. Trans. AMS163, 519-532 (1972) · Zbl 0205.38803 · doi:10.1090/S0002-9947-1972-0294702-5
[13] Wehler, J.: Deformation of varieties defined by sections in homogeneous vector bundles. Math. Ann.268, 519-532 (1984) · Zbl 0542.32008 · doi:10.1007/BF01451856
[14] Wehler, J.: Cyclic coverings: Deformation and Torelli theorem. Math. Ann.274, 443-472 (1986) · Zbl 0593.32017 · doi:10.1007/BF01457228
[15] Wehler, J.:K3-surfaces with Picard number 2. Arch. d. Math. (to appear) · Zbl 0602.14038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.