zbMATH — the first resource for mathematics

On the effective thermal conductivity of multiphase composites. (English) Zbl 0601.73120
While several micromechanical models have been developed today in the literature for two-phase media, the extent of their applicability to multiphase materials need yet to be investigated. The present paper studies the effective thermal conductivity of multicomponent composites, and concentrates on two methods: (a) the Mori-Tanaka model, (b) the ”generalized self-consistent scheme”. The Mori-Tanaka method of ”back- stress” previously developed in the context of elasticity of composites is applied here to the conduction problem. The ”generalized self- consistent scheme”, based on a particle-matrix embedding in the effective medium, is studied in this paper in the context of multicomponent media and two variations of this method distinctly different in their imbedding procedure are proposed. Numerical results are given for three-phase composites illustrating and comparing the proposed methods.

74A15 Thermodynamics in solid mechanics
74E05 Inhomogeneity in solid mechanics
74A60 Micromechanical theories
74M25 Micromechanics of solids
Full Text: DOI
[1] D. K. Hale,The physical properties of composite materials. J. Mat. Sci.11, 2105 (1976). · doi:10.1007/BF02403361
[2] B. Budiansky,On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids13, 223 (1965). · doi:10.1016/0022-5096(65)90011-6
[3] B. Budiansky,Thermal and thermoelastic properties of isotropic composites. J. Mech. Phys. Solids4, 286 (1970). · Zbl 0213.27203
[4] R. Hill,A self-consistent mechanics of composite materials. J. Mech. Phys. Solids13, 213 (1965). · doi:10.1016/0022-5096(65)90010-4
[5] T. Mori and K. Tanaka,Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica21, 571 (1973). · doi:10.1016/0001-6160(73)90064-3
[6] R. M. Christensen, Mechanics of Composite Materials. Wiley, New York 1979. · Zbl 0393.46049
[7] E. H. Kerner,The electrical conductivity of composite media. Proc. Phys. Soc.B 69, 802 (1956a). · Zbl 0070.23804
[8] E. H. Kerner,The elastic and thermoelastic properties of composite media. Proc. Phys. Soc.B 69, 807 (1956b). · Zbl 0070.23804
[9] Z. Hashin,Assessment of the self-consistent scheme approximation: Conductivity of particulate composites. J. Composite Materials2, 284 (1968). · doi:10.1177/002199836800200302
[10] J. C. Smith,Correction and extension of Van der Poel’s Method for calculating the shear modulus of a paniculate composite. J. of Research of the National Bureau of Standards78 A, 355 (1974). · doi:10.6028/jres.078A.019
[11] R. M. Christensen and K. H. Lo,Solution for effective shear properties of three phase sphere and cylinder models. J. Mech. Phys. Solids27, 315 (1979). · Zbl 0419.73007 · doi:10.1016/0022-5096(79)90032-2
[12] Y. Benveniste,The effective mechanical behaviour of composite materials with imperfect contact between the constituents. Mechanics of Materials4, 197 (1985). · doi:10.1016/0167-6636(85)90016-X
[13] M. Taya and T. N. Chou,On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite. Int. J. Solids Struct.17, 553 (1981). · Zbl 0476.73052 · doi:10.1016/0020-7683(81)90018-4
[14] M. Taya and E. D. Seidel,Void growth in a viscous metal. Int. J. Engng. Sci.19, 1083 (1981). · Zbl 0454.73084 · doi:10.1016/0020-7225(81)90099-9
[15] G. J. Weng,Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Engng. Sci.22, 845 (1984). · Zbl 0556.73074 · doi:10.1016/0020-7225(84)90033-8
[16] Z. Hashin and S. Shtrikman,A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys.33, 3125 (1962). · Zbl 0111.41401 · doi:10.1063/1.1728579
[17] G. N. Milton,Concerning bounds on the transport and mechanical properties of multicomponent composite materials. Appl. Phys.A 26, 125 (1981).
[18] N. Oshima and S. Nomura,A method to calculate effective modulus of hybrid composite materials. J. Comp. Materials19, 287 (1985). · doi:10.1177/002199838501900307
[19] M. Taya and T. Muza,On stiffness and strength of an aligned short-fiber reinforced composite containing fiber-end cracks under uniaxial applied stress. J. Appl. Mech.48, 361 (1981). · Zbl 0472.73115 · doi:10.1115/1.3157623
[20] Y. D. Eshelby,The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. London A 241, 376 (1957). · Zbl 0079.39606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.