Almalahi, Mohammed A.; Panchal, Satish K. On the theory of \(\psi \)-Hilfer nonlocal Cauchy problem. (English) Zbl 07334153 J. Sib. Fed. Univ., Math. Phys. 14, No. 2, 159-175 (2021). MSC: 34A 34D 34B 33E 47H PDF BibTeX XML Cite \textit{M. A. Almalahi} and \textit{S. K. Panchal}, J. Sib. Fed. Univ., Math. Phys. 14, No. 2, 159--175 (2021; Zbl 07334153) Full Text: DOI MNR
Hoa, N. V. On the stability for implicit uncertain fractional integral equations with fuzzy concept. (English) Zbl 07332456 Iran. J. Fuzzy Syst. 18, No. 1, 185-201 (2021). MSC: 45M10 45G10 PDF BibTeX XML Cite \textit{N. V. Hoa}, Iran. J. Fuzzy Syst. 18, No. 1, 185--201 (2021; Zbl 07332456) Full Text: DOI
Dangskul, Supreedee Stability of functional equations in a single variable via JS-metrics. (English) Zbl 07330771 J. Math. Anal. Appl. 499, No. 2, Article ID 125065, 11 p. (2021). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{S. Dangskul}, J. Math. Anal. Appl. 499, No. 2, Article ID 125065, 11 p. (2021; Zbl 07330771) Full Text: DOI
Nuino, Ahmed On the Brzdȩk’s fixed point approach to stability of a Drygas functional equation in 2-Banach spaces. (English) Zbl 07328308 J. Fixed Point Theory Appl. 23, No. 2, Paper No. 18, 17 p. (2021). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{A. Nuino}, J. Fixed Point Theory Appl. 23, No. 2, Paper No. 18, 17 p. (2021; Zbl 07328308) Full Text: DOI
EL-Fassi, Iz-iddine; Elqorachi, Elhoucien; Khodaei, Hamid A fixed point approach to stability of \(k\)-th radical functional equation in non-Archimedean \((n,\beta)\)-Banach spaces. (English) Zbl 1456.39003 Bull. Iran. Math. Soc. 47, No. 2, 487-504 (2021). MSC: 39B22 39B82 47H10 46S10 PDF BibTeX XML Cite \textit{I.-i. EL-Fassi} et al., Bull. Iran. Math. Soc. 47, No. 2, 487--504 (2021; Zbl 1456.39003) Full Text: DOI
Rassias, John Michael; Pasupathi, Narasimman; Saadati, Reza; de la Sen, Manuel Approximation of mixed Euler-Lagrange \(\sigma\)-cubic-quartic functional equation in Felbin’s type f-NLS. (English) Zbl 07319852 J. Funct. Spaces 2021, Article ID 8068673, 7 p. (2021). MSC: 39B82 39B52 46S40 47S40 PDF BibTeX XML Cite \textit{J. M. Rassias} et al., J. Funct. Spaces 2021, Article ID 8068673, 7 p. (2021; Zbl 07319852) Full Text: DOI
Ramezani, Maryam; Baghani, Hamid Some new stability results of a Cauchy-Jensen equation in incomplete normed spaces. (English) Zbl 07315642 J. Math. Anal. Appl. 495, No. 2, Article ID 124752, 12 p. (2021). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{M. Ramezani} and \textit{H. Baghani}, J. Math. Anal. Appl. 495, No. 2, Article ID 124752, 12 p. (2021; Zbl 07315642) Full Text: DOI
Peppo, Catherine Asymptotic Hyers-Ulam stability or superstability by unilateral perturbations on the concavity side for generalized linear equations. (English) Zbl 07297366 J. Convex Anal. 28, No. 1, 143-156 (2021). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B62 26A51 PDF BibTeX XML Cite \textit{C. Peppo}, J. Convex Anal. 28, No. 1, 143--156 (2021; Zbl 07297366) Full Text: Link
Shen, Yonghong; Li, Yongjin The particular solution and Ulam stability of linear Riemann-Liouville fractional dynamic equations on isolated time scales. (English) Zbl 07332411 J. Math. Inequal. 14, No. 4, 1389-1414 (2020). MSC: 34N05 34A08 34A05 44A10 34D10 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{Y. Li}, J. Math. Inequal. 14, No. 4, 1389--1414 (2020; Zbl 07332411) Full Text: DOI
Vu, H.; Rassias, J. M.; Van Hoa, N. Ulam-Hyers-Rassias stability for fuzzy fractional integral equations. (English) Zbl 07332184 Iran. J. Fuzzy Syst. 17, No. 2, 17-27 (2020). MSC: 45M10 45G10 PDF BibTeX XML Cite \textit{H. Vu} et al., Iran. J. Fuzzy Syst. 17, No. 2, 17--27 (2020; Zbl 07332184) Full Text: DOI
Mohiuddine, Syed Abdul; Rassias, John Michael; Alotaibi, Abdullah Solution of the Ulam stability problem for Euler-Lagrange \(k\)-quintic mappings. (English) Zbl 07331829 Georgian Math. J. 27, No. 4, 585-592 (2020). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{S. A. Mohiuddine} et al., Georgian Math. J. 27, No. 4, 585--592 (2020; Zbl 07331829) Full Text: DOI
Tate, Shivaji Ramchandra; Dinde, Hambirrao Tatyasaheb Ulam stabilities for nonlinear fractional integro-differential equations with constant coefficient via Pachpatte’s inequality. (English) Zbl 07326393 J. Math. Model. 8, No. 3, 257-278 (2020). MSC: 26A33 45J05 34K10 45M10 PDF BibTeX XML Cite \textit{S. R. Tate} and \textit{H. T. Dinde}, J. Math. Model. 8, No. 3, 257--278 (2020; Zbl 07326393) Full Text: DOI
Maghsoudi, Mohammad; Bodaghi, Abasalt On the stability of multi \(m\)-Jensen mappings. (English) Zbl 07314442 Casp. J. Math. Sci. 9, No. 2, 199-209 (2020). MSC: 39B52 39B72 39B82 46B03 PDF BibTeX XML Cite \textit{M. Maghsoudi} and \textit{A. Bodaghi}, Casp. J. Math. Sci. 9, No. 2, 199--209 (2020; Zbl 07314442) Full Text: DOI
Govindan, Vediyappan; Lee, Jung-Rye; Pinelas, Sandra; Noorsaba, Abdul Rahim; Balasubramanian, Ganapathy Solution and stability of an \(n\)-variable additive functional equation. (English) Zbl 07312270 Korean J. Math. 28, No. 3, 613-621 (2020). MSC: 39B52 46H25 PDF BibTeX XML Cite \textit{V. Govindan} et al., Korean J. Math. 28, No. 3, 613--621 (2020; Zbl 07312270) Full Text: DOI
Aruldass, Antony Raj; Pachaiyappan, Divyakumari; Lee, Jung-Rye Duotrigintic functional equation and its stability in Banach spaces. (English) Zbl 07312264 Korean J. Math. 28, No. 3, 525-537 (2020). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. R. Aruldass} et al., Korean J. Math. 28, No. 3, 525--537 (2020; Zbl 07312264) Full Text: DOI
Aribou, Youssef; Rossafi, Mohamed Hyperstability of the \(k\)-cubic functional equation in non-Archimedean Banach spaces. (English) Zbl 07311480 J. Math. 2020, Article ID 8843464, 10 p. (2020). MSC: 39 11 PDF BibTeX XML Cite \textit{Y. Aribou} and \textit{M. Rossafi}, J. Math. 2020, Article ID 8843464, 10 p. (2020; Zbl 07311480) Full Text: DOI
Roh, Jaiok; Lee, Yang-Hi; Jung, Soon-Mo The stability of a general sextic functional equation by fixed point theory. (English) Zbl 07301568 J. Funct. Spaces 2020, Article ID 6497408, 8 p. (2020). MSC: 39B82 47H10 PDF BibTeX XML Cite \textit{J. Roh} et al., J. Funct. Spaces 2020, Article ID 6497408, 8 p. (2020; Zbl 07301568) Full Text: DOI
Gul, Rozi; Sarwar, Muhammad; Shah, Kamal; Abdeljawad, Thabet; Jarad, Fahd Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations. (English) Zbl 1456.35213 J. Funct. Spaces 2020, Article ID 4714032, 9 p. (2020). MSC: 35R11 35G30 PDF BibTeX XML Cite \textit{R. Gul} et al., J. Funct. Spaces 2020, Article ID 4714032, 9 p. (2020; Zbl 1456.35213) Full Text: DOI
Govindan, Vediyappan; Park, Choonkil; Pinelas, Sandra; Rassias, Themistocles M. Hyers-Ulam stability of an additive-quadratic functional equation. (English) Zbl 1455.39007 Cubo 22, No. 2, 233-255 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{V. Govindan} et al., Cubo 22, No. 2, 233--255 (2020; Zbl 1455.39007) Full Text: DOI
Park, Choonkil; Jin, Yuanfeng; Shin, Dong Yun; Zhang, Xiaohong; Govindan, Vediyappan Permuting triderivations and permuting trihomomorphisms in Banach algebras. (English) Zbl 1452.39006 Rocky Mt. J. Math. 50, No. 5, 1793-1806 (2020). MSC: 39B52 39B62 39B82 46L57 47B47 17A40 PDF BibTeX XML Cite \textit{C. Park} et al., Rocky Mt. J. Math. 50, No. 5, 1793--1806 (2020; Zbl 1452.39006) Full Text: DOI Euclid
Harikrishnan, S.; Shah, Kamal; Kanagarajan, K. Study of a boundary value problem for fractional order \(\psi\)-Hilfer fractional derivative. (English) Zbl 1456.34005 Arab. J. Math. 9, No. 3, 589-596 (2020). MSC: 34A08 34F05 34B15 47N20 PDF BibTeX XML Cite \textit{S. Harikrishnan} et al., Arab. J. Math. 9, No. 3, 589--596 (2020; Zbl 1456.34005) Full Text: DOI
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of a nonlinear Volterra integral equation on time scales. (English) Zbl 07271996 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer (ISBN 978-3-030-56322-6/hbk; 978-3-030-56323-3/ebook). Springer Proceedings in Mathematics & Statistics 333, 123-131 (2020). MSC: 45 39B82 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, in: Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1--5, 2019. Cham: Springer. 123--131 (2020; Zbl 07271996) Full Text: DOI
Zada, Akbar; Pervaiz, Bakhtawar; Alzabut, Jehad; Shah, Syed Omar Further results on Ulam stability for a system of first-order nonsingular delay differential equations. (English) Zbl 1456.34074 Demonstr. Math. 53, 225-235 (2020). MSC: 34K27 34K20 PDF BibTeX XML Cite \textit{A. Zada} et al., Demonstr. Math. 53, 225--235 (2020; Zbl 1456.34074) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Hyers-Ulam stability and best constant for Cayley \(h\)-difference equations. (English) Zbl 07270615 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4207-4222 (2020). MSC: 39A30 39A13 39B82 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4207--4222 (2020; Zbl 07270615) Full Text: DOI
Falihi, S.; Bodaghi, A.; Shojaee, B. A characterization of multi-mixed additive-quadratic mappings and a fixed point application. (English) Zbl 1451.39025 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235-247 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 4, 31-46 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{S. Falihi} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235--247 (2020; Zbl 1451.39025) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu; Rassias, John Michael Best constant for Ulam stability of first-order \(h\)-difference equations with periodic coefficient. (English) Zbl 1451.39014 J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020). MSC: 39A30 39B82 PDF BibTeX XML Cite \textit{D. R. Anderson} et al., J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020; Zbl 1451.39014) Full Text: DOI
Bodaghi, Abasalt; Pinelas, Sandra; Vediyappan, Govindan; Gunesekaran, Kokila An \(n\)-dimensional cubic functional equation and its Hyers-Ulam stability. (English) Zbl 1450.39011 J. Anal. 28, No. 3, 663-682 (2020). MSC: 39B52 39B72 39B82 54A40 PDF BibTeX XML Cite \textit{A. Bodaghi} et al., J. Anal. 28, No. 3, 663--682 (2020; Zbl 1450.39011) Full Text: DOI
Senasukh, Jedsada; Saejung, Satit A note on the stability of some functional equations on certain groupoids. (English) Zbl 07259304 Constr. Math. Anal. 3, No. 2, 96-103 (2020). MSC: 39B52 39B82 54C60 47H10 PDF BibTeX XML Cite \textit{J. Senasukh} and \textit{S. Saejung}, Constr. Math. Anal. 3, No. 2, 96--103 (2020; Zbl 07259304) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo Generalized Hyers-Ulam stability of some cubic-quadratic-additive type functional equations. (English) Zbl 1450.39018 Kyungpook Math. J. 60, No. 1, 133-144 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Kyungpook Math. J. 60, No. 1, 133--144 (2020; Zbl 1450.39018) Full Text: DOI
Ali, Arshad; Shah, K. Ulam-Hyers stability analysis of a three-point boundary-value problem for fractional differential equations. (English) Zbl 1452.34009 Ukr. Math. J. 72, No. 2, 161-176 (2020) and Ukr. Mat. Zh. 72, No. 2, 147-160 (2020). MSC: 34A08 34B15 34D10 34B10 PDF BibTeX XML Cite \textit{A. Ali} and \textit{K. Shah}, Ukr. Math. J. 72, No. 2, 161--176 (2020; Zbl 1452.34009) Full Text: DOI
Haddadi, M. Ternary quadratic Pompeiu on ternary Banach algebras. (English) Zbl 1452.39009 Math. Sci., Springer 14, No. 2, 121-128 (2020). MSC: 39B72 39B82 46H05 PDF BibTeX XML Cite \textit{M. Haddadi}, Math. Sci., Springer 14, No. 2, 121--128 (2020; Zbl 1452.39009) Full Text: DOI
Ramzanpour, Elahe; Bodaghi, Abasalt; Gilani, Alireza Stability and hyperstability of multi-additive-cubic mappings in intuitionistic fuzzy normed spaces. (English) Zbl 1448.39048 Honam Math. J. 42, No. 2, 391-409 (2020). MSC: 39B82 39B52 39B72 47H10 54A40 PDF BibTeX XML Cite \textit{E. Ramzanpour} et al., Honam Math. J. 42, No. 2, 391--409 (2020; Zbl 1448.39048) Full Text: DOI
Khodaei, Hamid Asymptotic behavior of \(n\)-Jordan homomorphisms. (English) Zbl 07246865 Mediterr. J. Math. 17, No. 5, Paper No. 143, 9 p. (2020). Reviewer: Choonkil Park (Seoul) MSC: 47B48 39B82 39B52 46L05 PDF BibTeX XML Cite \textit{H. Khodaei}, Mediterr. J. Math. 17, No. 5, Paper No. 143, 9 p. (2020; Zbl 07246865) Full Text: DOI
Benzarouala, Chaimaa; Oubbi, Lahbib Ulam-stability of a generalized linear functional equation, a fixed point approach. (English) Zbl 1448.39045 Aequationes Math. 94, No. 5, 989-1000 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{C. Benzarouala} and \textit{L. Oubbi}, Aequationes Math. 94, No. 5, 989--1000 (2020; Zbl 1448.39045) Full Text: DOI
Lee, Yang-Hi Hyers-Ulam-Rassias stability of a quadratic-cubic-quartic functional equation. (English) Zbl 1447.39020 Korean J. Math. 28, No. 2, 159-168 (2020). MSC: 39B82 PDF BibTeX XML Cite \textit{Y.-H. Lee}, Korean J. Math. 28, No. 2, 159--168 (2020; Zbl 1447.39020) Full Text: DOI
Jin, Sun-Sook; Lee, Yang-Hi A fixed point approach to the stability of the functional equations related to an additive and quartic mapping. (English) Zbl 1447.39018 Nonlinear Funct. Anal. Appl. 25, No. 2, 249-259 (2020). MSC: 39B82 47H10 PDF BibTeX XML Cite \textit{S.-S. Jin} and \textit{Y.-H. Lee}, Nonlinear Funct. Anal. Appl. 25, No. 2, 249--259 (2020; Zbl 1447.39018) Full Text: Link
Lee, Yang-Hi; Jung, Soon-Mo Stability of some cubic-additive functional equations. (English) Zbl 1447.39021 Nonlinear Funct. Anal. Appl. 25, No. 1, 35-54 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Nonlinear Funct. Anal. Appl. 25, No. 1, 35--54 (2020; Zbl 1447.39021) Full Text: Link
Samina; Shah, Kamal; Khan, Rahmat Ali Stability theory to a coupled system of nonlinear fractional hybrid differential equations. (English) Zbl 1450.34011 Indian J. Pure Appl. Math. 51, No. 2, 669-687 (2020). MSC: 34A08 34A38 34D10 47N20 PDF BibTeX XML Cite \textit{Samina} et al., Indian J. Pure Appl. Math. 51, No. 2, 669--687 (2020; Zbl 1450.34011) Full Text: DOI
Thanyacharoen, Anurak; Sintunavarat, Wutiphol The new investigation of the stability of mixed type additive-quartic functional equations in non-Archimedean spaces. (English) Zbl 1446.39024 Demonstr. Math. 53, 174-192 (2020). MSC: 39B52 39B55 39B82 47H10 46H25 PDF BibTeX XML Cite \textit{A. Thanyacharoen} and \textit{W. Sintunavarat}, Demonstr. Math. 53, 174--192 (2020; Zbl 1446.39024) Full Text: DOI
Hwang, Inho; Park, Choonkil Ulam stability of an additive-quadratic functional equation in Banach spaces. (English) Zbl 1445.39019 J. Math. Inequal. 14, No. 2, 421-436 (2020). MSC: 39B82 39B52 47H10 39B62 PDF BibTeX XML Cite \textit{I. Hwang} and \textit{C. Park}, J. Math. Inequal. 14, No. 2, 421--436 (2020; Zbl 1445.39019) Full Text: DOI
Park, Choonkil; Rassias, Themistocles M. Additive-quadratic functional inequalities. (English) Zbl 07225659 Daras, Nicholas J. (ed.) et al., Computational mathematics and variational analysis. Cham: Springer (ISBN 978-3-030-44624-6/hbk; 978-3-030-44625-3/ebook). Springer Optimization and Its Applications 159, 315-341 (2020). MSC: 65Jxx 49Jxx PDF BibTeX XML Cite \textit{C. Park} and \textit{T. M. Rassias}, Springer Optim. Appl. 159, 315--341 (2020; Zbl 07225659) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. Additive \(( \rho_1, \rho_2)\)-functional inequalities in complex Banach spaces. (English) Zbl 07225654 Daras, Nicholas J. (ed.) et al., Computational mathematics and variational analysis. Cham: Springer (ISBN 978-3-030-44624-6/hbk; 978-3-030-44625-3/ebook). Springer Optimization and Its Applications 159, 227-245 (2020). MSC: 65Jxx 49Jxx PDF BibTeX XML Cite \textit{J. R. Lee} et al., Springer Optim. Appl. 159, 227--245 (2020; Zbl 07225654) Full Text: DOI
Turab, Ali; Sintunavarat, Wutiphol On a solution of the probabilistic predator-prey model approached by the fixed point methods. (English) Zbl 1447.92372 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 64, 15 p. (2020). MSC: 92D25 39B82 PDF BibTeX XML Cite \textit{A. Turab} and \textit{W. Sintunavarat}, J. Fixed Point Theory Appl. 22, No. 3, Paper No. 64, 15 p. (2020; Zbl 1447.92372) Full Text: DOI
Senasukh, Jedsada; Saejung, Satit On the hyperstability of the Drygas functional equation on a restricted domain. (English) Zbl 1442.39036 Bull. Aust. Math. Soc. 102, No. 1, 126-137 (2020). MSC: 39B82 39B62 PDF BibTeX XML Cite \textit{J. Senasukh} and \textit{S. Saejung}, Bull. Aust. Math. Soc. 102, No. 1, 126--137 (2020; Zbl 1442.39036) Full Text: DOI
Ghali, R. E.; Kabbaj, S. 2-Banach stability results for the radical cubic functional equation related to quadratic mapping. (English) Zbl 1442.39029 J. Linear Topol. Algebra 9, No. 1, 35-51 (2020). MSC: 39B52 39B82 39B62 47H14 47J20 47H10 PDF BibTeX XML Cite \textit{R. E. Ghali} and \textit{S. Kabbaj}, J. Linear Topol. Algebra 9, No. 1, 35--51 (2020; Zbl 1442.39029) Full Text: Link
Kaskasem, P.; Klin-eam, C. Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in \(C^*\)-ternary algebras. (English) Zbl 1442.39030 J. Linear Topol. Algebra 9, No. 1, 1-15 (2020). MSC: 39B52 39B82 47H10 PDF BibTeX XML Cite \textit{P. Kaskasem} and \textit{C. Klin-eam}, J. Linear Topol. Algebra 9, No. 1, 1--15 (2020; Zbl 1442.39030) Full Text: Link
Kang, Dongseung; Kim, Hoewoon B. Generalized Hyers-Ulam stability of diffusion equation in the \(n\)-dimensional Euclidean space, \( \mathbb{R}^n\). (English) Zbl 1440.35010 Appl. Math. Lett. 103, Article ID 106169, 6 p. (2020). MSC: 35B35 35K05 35K15 PDF BibTeX XML Cite \textit{D. Kang} and \textit{H. B. Kim}, Appl. Math. Lett. 103, Article ID 106169, 6 p. (2020; Zbl 1440.35010) Full Text: DOI
Zhang, Xuping; Xin, Zhen Existence, uniqueness and UHR stability of solutions to nonlinear ordinary differential equations with noninstantaneous impulses. (English) Zbl 07201333 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 195-203 (2020). MSC: 35A01 35F25 37C75 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{Z. Xin}, Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 195--203 (2020; Zbl 07201333) Full Text: DOI
EL-Fassi, Iz-iddine; Kabbaj, Samir; Chahbi, Abdellatif Measure zero stability problem of a generalized quadratic functional equation. (English) Zbl 1440.39018 São Paulo J. Math. Sci. 14, No. 1, 301-311 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{I.-i. EL-Fassi} et al., São Paulo J. Math. Sci. 14, No. 1, 301--311 (2020; Zbl 1440.39018) Full Text: DOI
Kim, Hark-Mahn; Park, Jin-Seok; Shin, Hwan-Yong Approximation of quadratic Lie \(*\)-derivations on \(\rho\)-complete convex modular algebras. (English) Zbl 1434.17020 J. Math. Inequal. 14, No. 1, 121-134 (2020). MSC: 17B40 16W25 39B82 PDF BibTeX XML Cite \textit{H.-M. Kim} et al., J. Math. Inequal. 14, No. 1, 121--134 (2020; Zbl 1434.17020) Full Text: DOI
Ahmad, Manzoor; Jiang, Jiqiang; Zada, Akbar; Shah, Syed Omar; Xu, Jiafa Analysis of coupled system of implicit fractional differential equations involving Katugampola-Caputo fractional derivative. (English) Zbl 1435.34011 Complexity 2020, Article ID 9285686, 11 p. (2020). MSC: 34A08 34A09 PDF BibTeX XML Cite \textit{M. Ahmad} et al., Complexity 2020, Article ID 9285686, 11 p. (2020; Zbl 1435.34011) Full Text: DOI
Kim, Gwang Hui; Lee, Yang-Hi Stability of an additive-quadratic-quartic functional equation. (English) Zbl 1436.39021 Demonstr. Math. 53, 1-7 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{G. H. Kim} and \textit{Y.-H. Lee}, Demonstr. Math. 53, 1--7 (2020; Zbl 1436.39021) Full Text: DOI
Park, Choonkil; Paokanta, Siriluk; Suparatulatorn, Raweerote Ulam stability of bihomomorphisms and biderivations in Banach algebras. (English) Zbl 1439.39013 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 27, 18 p. (2020). Reviewer: Maryam Amyari (Mashhad) MSC: 39B52 39B82 39B62 46L05 47B47 47H10 46L57 PDF BibTeX XML Cite \textit{C. Park} et al., J. Fixed Point Theory Appl. 22, No. 2, Paper No. 27, 18 p. (2020; Zbl 1439.39013) Full Text: DOI
Sharma, Ajay K.; Sharma, Aakriti Boundedness, compactness and the Hyers-Ulam stability of a linear combination of differential operators. (English) Zbl 1441.47042 Complex Anal. Oper. Theory 14, No. 1, Paper No. 14, 12 p. (2020). Reviewer: Vagia Vlachou (Rio) MSC: 47B37 47E05 46E20 39B82 PDF BibTeX XML Cite \textit{A. K. Sharma} and \textit{A. Sharma}, Complex Anal. Oper. Theory 14, No. 1, Paper No. 14, 12 p. (2020; Zbl 1441.47042) Full Text: DOI
Choi, Chang-Kwon; Lee, Bogeun Stability of mixed additive-quadratic and additive-Drygas functional equations. (English) Zbl 1434.39024 Result. Math. 75, No. 1, Paper No. 38, 14 p. (2020). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 54E52 PDF BibTeX XML Cite \textit{C.-K. Choi} and \textit{B. Lee}, Result. Math. 75, No. 1, Paper No. 38, 14 p. (2020; Zbl 1434.39024) Full Text: DOI
Başcı, Yasemin; Mısır, Adil; Öğrekçi, Süleyman On the stability problem of differential equations in the sense of Ulam. (English) Zbl 1439.34061 Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020). MSC: 34D10 47N20 PDF BibTeX XML Cite \textit{Y. Başcı} et al., Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020; Zbl 1439.34061) Full Text: DOI
Salehi, N.; Modarres, S. M. S. A fixed point method for stability of involutions on multi-Banach algebra. (English) Zbl 1440.39021 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 20, 11 p. (2020). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 46L05 46L35 PDF BibTeX XML Cite \textit{N. Salehi} and \textit{S. M. S. Modarres}, J. Fixed Point Theory Appl. 22, No. 1, Paper No. 20, 11 p. (2020; Zbl 1440.39021) Full Text: DOI
Senthil Kumar, Beri Venkatachalapathy; Bodaghi, Abasalt Approximation of the Jensen type rational functional equation by a fixed point technique. (English) Zbl 1431.39015 Bol. Soc. Parana. Mat. (3) 38, No. 3, 125-132 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} and \textit{A. Bodaghi}, Bol. Soc. Parana. Mat. (3) 38, No. 3, 125--132 (2020; Zbl 1431.39015) Full Text: Link
Bodaghi, Abasalt; Senthil Kumar, Beri Venkatachalapathy; Rassias, John Michael Stabilities and non-stabilities of the reciprocal-nonic and the reciprocal-decic functional equations. (English) Zbl 1431.39013 Bol. Soc. Parana. Mat. (3) 38, No. 3, 9-22 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{A. Bodaghi} et al., Bol. Soc. Parana. Mat. (3) 38, No. 3, 9--22 (2020; Zbl 1431.39013) Full Text: Link
Almahalebi, Muaadh; Sirouni, Mohamed; Kabbaj, Samir Ultrametric hyperstability of a Cauchy-Jensen type functional equation. (English) Zbl 1429.39021 Palest. J. Math. 9, No. 1, 245-253 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{M. Almahalebi} et al., Palest. J. Math. 9, No. 1, 245--253 (2020; Zbl 1429.39021) Full Text: Link
Salimi, Somaye; Bodaghi, Abasalt A fixed point application for the stability and hyperstability of multi-Jensen-quadratic mappings. (English) Zbl 1430.39012 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 9, 15 p. (2020). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{S. Salimi} and \textit{A. Bodaghi}, J. Fixed Point Theory Appl. 22, No. 1, Paper No. 9, 15 p. (2020; Zbl 1430.39012) Full Text: DOI
Sayar, Khaled Yahya Naif; Bergam, Amal Approximate solutions of a quadratic functional equation in 2-Banach spaces using fixed point theorem. (English) Zbl 1428.39033 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 3, 16 p. (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{K. Y. N. Sayar} and \textit{A. Bergam}, J. Fixed Point Theory Appl. 22, No. 1, Paper No. 3, 16 p. (2020; Zbl 1428.39033) Full Text: DOI
Hwang, Inho; Park, Choonkil Fixed points and partial multipliers in Banach algebras. (English) Zbl 1432.39018 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 15, 23 p. (2020). MSC: 39B52 46L05 47H10 39B62 43A22 39B82 PDF BibTeX XML Cite \textit{I. Hwang} and \textit{C. Park}, J. Fixed Point Theory Appl. 22, No. 1, Paper No. 15, 23 p. (2020; Zbl 1432.39018) Full Text: DOI
Zada, Akbar; Mashal, Asia Stability analysis of \(n^{th}\) order nonlinear impulsive differential equations in quasi-Banach space. (English) Zbl 1432.34075 Numer. Funct. Anal. Optim. 41, No. 3, 294-321 (2020). MSC: 34D10 34A37 34B10 26A33 34G20 PDF BibTeX XML Cite \textit{A. Zada} and \textit{A. Mashal}, Numer. Funct. Anal. Optim. 41, No. 3, 294--321 (2020; Zbl 1432.34075) Full Text: DOI
Senthil Kumar, Beri Venkatachalapathy; Dutta, Hemen Fundamental stabilities of various forms of complex valued functional equations. (English) Zbl 1423.39037 Dutta, Hemen (ed.) et al., Applied mathematical analysis: theory, methods, and applications. Cham: Springer. Stud. Syst. Decis. Control 177, 29-59 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} and \textit{H. Dutta}, Stud. Syst. Decis. Control 177, 29--59 (2020; Zbl 1423.39037) Full Text: DOI
Lu, Ziying; Lu, Gang; Jin, Yuanfeng; Park, Choonkil The stability of additive \((\alpha,\beta)\)-functional equations. (English) Zbl 07334308 J. Appl. Anal. Comput. 9, No. 6, 2295-2307 (2019). MSC: 39B52 39B62 47H10 PDF BibTeX XML Cite \textit{Z. Lu} et al., J. Appl. Anal. Comput. 9, No. 6, 2295--2307 (2019; Zbl 07334308) Full Text: DOI
Kim, Hark-Mahn; Shin, Hwan-Yong Approximate Lie \(\ast \)-derivations on \(\rho \)-complete convex modular algebras. (English) Zbl 07334222 J. Appl. Anal. Comput. 9, No. 2, 765-776 (2019). MSC: 39B52 47H09 PDF BibTeX XML Cite \textit{H.-M. Kim} and \textit{H.-Y. Shin}, J. Appl. Anal. Comput. 9, No. 2, 765--776 (2019; Zbl 07334222) Full Text: DOI
Kalvandi, Vida; Eghbali, Nasrin; Rassias, John Michael Mittag-Leffler-Hyers-Ulam stability of linear differential equations of second order. (English) Zbl 07314081 J. Math. Ext. 13, No. 1, 29-43 (2019). MSC: 34A08 34D10 34A30 PDF BibTeX XML Cite \textit{V. Kalvandi} et al., J. Math. Ext. 13, No. 1, 29--43 (2019; Zbl 07314081) Full Text: Link
Jung, Yong-Soo On the stability of a higher functional equation in Banach algebras. (English) Zbl 1450.39016 Kyungpook Math. J. 59, No. 4, 689-702 (2019). MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{Y.-S. Jung}, Kyungpook Math. J. 59, No. 4, 689--702 (2019; Zbl 1450.39016) Full Text: DOI
Lee, Yang-Hi Hyers-Ulam-Rassias stability of an additive-quadratic-quartic functional equation. (English) Zbl 1448.39046 Honam Math. J. 41, No. 4, 813-821 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, Honam Math. J. 41, No. 4, 813--821 (2019; Zbl 1448.39046) Full Text: DOI
Park, Choonkil; Yun, Sungsik; Lee, Jung Rye; Shin, Dong Yun Set-valued additive functional equations. (English) Zbl 07251269 Constr. Math. Anal. 2, No. 2, 89-97 (2019). MSC: 47H10 54C60 39B52 47H04 PDF BibTeX XML Cite \textit{C. Park} et al., Constr. Math. Anal. 2, No. 2, 89--97 (2019; Zbl 07251269) Full Text: DOI
Anderson, Douglas R. Hyers-Ulam stability for a first-order linear proportional nabla difference operator. (English) Zbl 07245452 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer (ISBN 978-3-030-28949-2/hbk; 978-3-030-28950-8/ebook). 255-272 (2019). MSC: 39B82 39A70 39A30 PDF BibTeX XML Cite \textit{D. R. Anderson}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 255--272 (2019; Zbl 07245452) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Hyers-Ulam stability of a discrete diamond-alpha derivative equation. (English) Zbl 1448.39033 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 237-254 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A70 39B82 39B22 39A30 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 237--254 (2019; Zbl 1448.39033) Full Text: DOI
Ramdoss, Murali; Arumugam, Ponmana Selvan Fourier transforms and Ulam stabilities of linear differential equations. (English) Zbl 1451.34075 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 195-217 (2019). MSC: 34D10 42A38 PDF BibTeX XML Cite \textit{M. Ramdoss} and \textit{P. S. Arumugam}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 195--217 (2019; Zbl 1451.34075) Full Text: DOI
Pinelas, Sandra; Govindan, V.; Tamilvanan, K. Stability of an \(n\)-dimensional functional equation in Banach space and fuzzy normed space. (English) Zbl 1452.39007 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 159-181 (2019). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B52 39B82 54A40 PDF BibTeX XML Cite \textit{S. Pinelas} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 159--181 (2019; Zbl 1452.39007) Full Text: DOI
Kumar, B. V. Senthil; Sabarinathan, S.; Rassias, M. J. Stabilities of MIQD and MIQA functional equations via fixed point technique. (English) Zbl 1450.39017 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 143-152 (2019). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 47H10 12J25 26E30 PDF BibTeX XML Cite \textit{B. V. S. Kumar} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 143--152 (2019; Zbl 1450.39017) Full Text: DOI
Ramdoss, Murali; Aruldass, Antony Raj General solution and Hyers-Ulam stability of duotrigintic functional equation in multi-Banach spaces. (English) Zbl 07245444 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer (ISBN 978-3-030-28949-2/hbk; 978-3-030-28950-8/ebook). 125-141 (2019). Reviewer: Stefan Czerwik (Gliwice) MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{M. Ramdoss} and \textit{A. R. Aruldass}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 125--141 (2019; Zbl 07245444) Full Text: DOI
Ali, Amjad; Shah, Kamal; Li, Yongjin Topological degree theory and Ulam’s stability analysis of a boundary value problem of fractional differential equations. (English) Zbl 1451.34006 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 73-92 (2019). MSC: 34A08 34B15 34D10 47N20 PDF BibTeX XML Cite \textit{A. Ali} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 73--92 (2019; Zbl 1451.34006) Full Text: DOI
Shah, Kamal; Gul, Zamin; Li, Yongjin; Khan, Rahmat Ali Hyers-Ulam’s stability results to a three-point boundary value problem of nonlinear fractional order differential equations. (English) Zbl 1451.34015 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 45-71 (2019). MSC: 34A08 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{K. Shah} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 45--71 (2019; Zbl 1451.34015) Full Text: DOI
Chung, Jaeyoung; Rassias, John Michael; Lee, Bogeun; Choi, Chang-Kwon Hyperstability of a linear functional equation on restricted domains. (English) Zbl 1450.39014 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 27-42 (2019). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{J. Chung} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 27--42 (2019; Zbl 1450.39014) Full Text: DOI
Petruşel, Adrian; Rus, Ioan A. Ulam stability of zero point equations. (English) Zbl 1452.39010 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 345-364 (2019). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{A. Petruşel} and \textit{I. A. Rus}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 345--364 (2019; Zbl 1452.39010) Full Text: DOI
Paul, Kallol; Sain, Debmalya; Ghosh, Puja Symmetry of Birkhoff-James orthogonality of bounded linear operators. (English) Zbl 07245317 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer (ISBN 978-3-030-28971-3/hbk; 978-3-030-28972-0/ebook). 331-344 (2019). MSC: 47 PDF BibTeX XML Cite \textit{K. Paul} et al., in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 331--344 (2019; Zbl 07245317) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. Bi-additive s-functional inequalities and quasi-\(\ast\)-multipliers on Banach \(\ast\)-algebras. (English) Zbl 07245312 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer (ISBN 978-3-030-28971-3/hbk; 978-3-030-28972-0/ebook). 199-215 (2019). Reviewer: Sanja Varošanec (Zagreb) MSC: 39B62 39B52 39B55 PDF BibTeX XML Cite \textit{J. R. Lee} et al., in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 199--215 (2019; Zbl 07245312) Full Text: DOI
Belfakih, Keltouma; Elqorachi, Elhoucien; Rassias, Themistocles M. Solutions and stability of some functional equations on semigroups. (English) Zbl 1447.39017 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 167-198 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{K. Belfakih} et al., in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 167--198 (2019; Zbl 1447.39017) Full Text: DOI
Găvruţa, Paşc; Manolescu, Laura Approximation by cubic mappings. (English) Zbl 1447.39015 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 153-165 (2019). Reviewer: Mohammad Sajid (Buraidah) MSC: 39B52 39B82 39B12 PDF BibTeX XML Cite \textit{P. Găvruţa} and \textit{L. Manolescu}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 153--165 (2019; Zbl 1447.39015) Full Text: DOI
Dung, Nguyen Van; Sintunavarat, Wutiphol Ulam-Hyers stability of functional equations in quasi-\(\beta\)-Banach spaces. (English) Zbl 1447.39024 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer, 97-130 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{N. Van Dung} and \textit{W. Sintunavarat}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 97--130 (2019; Zbl 1447.39024) Full Text: DOI
Benzarouala, Chaimaa; Oubbi, Lahbib A purely fixed point approach to the Ulam-Hyers stability and hyperstability of a general functional equation. (English) Zbl 1448.39044 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 47-56 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 47H10 47H14 PDF BibTeX XML Cite \textit{C. Benzarouala} and \textit{L. Oubbi}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 47--56 (2019; Zbl 1448.39044) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M.; Zhang, Xiaohong Additive \(\rho\)-functional inequalities and their applications. (English) Zbl 07216130 Rassias, Themistocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer (ISBN 978-3-030-31338-8/hbk; 978-3-030-31339-5/ebook). Springer Optimization and Its Applications 154, 391-410 (2019). MSC: 47B 46H 39B PDF BibTeX XML Cite \textit{J. R. Lee} et al., Springer Optim. Appl. 154, 391--410 (2019; Zbl 07216130) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. Additive functional inequalities and partial multipliers in complex Banach algebras. (English) Zbl 07216129 Rassias, Themistocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer (ISBN 978-3-030-31338-8/hbk; 978-3-030-31339-5/ebook). Springer Optimization and Its Applications 154, 365-389 (2019). MSC: 47B 46H 39B PDF BibTeX XML Cite \textit{J. R. Lee} et al., Springer Optim. Appl. 154, 365--389 (2019; Zbl 07216129) Full Text: DOI
El-Fassi, Iz-iddine On hyperstability of the two-variable Jensen functional equation on restricted domain. (English) Zbl 1442.39034 Rassias, Themistocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer. Springer Optim. Appl. 154, 165-183 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B62 47H14 47H10 PDF BibTeX XML Cite \textit{I.-i. El-Fassi}, Springer Optim. Appl. 154, 165--183 (2019; Zbl 1442.39034) Full Text: DOI
Murali, R.; Selvan, A. Hyers-Ulam stability of \(n\)th order linear differential equation. (English) Zbl 1448.34114 Proyecciones 38, No. 3, 553-566 (2019). Reviewer: Olusola Akinyele (Bowie) MSC: 34D10 34B15 34A30 PDF BibTeX XML Cite \textit{R. Murali} and \textit{A. Selvan}, Proyecciones 38, No. 3, 553--566 (2019; Zbl 1448.34114) Full Text: DOI
Khochemane, Houssem Eddine; Ardjouni, Abdelouaheb; Zitouni, Salah Existence and Ulam stability for two orders delay fractional differential equations. (English) Zbl 1441.34082 Rend. Mat. Appl., VII. Ser. 40, No. 2, 141-158 (2019). MSC: 34K37 34K27 47N20 PDF BibTeX XML Cite \textit{H. E. Khochemane} et al., Rend. Mat. Appl., VII. Ser. 40, No. 2, 141--158 (2019; Zbl 1441.34082) Full Text: Link
Aiemsomboon, Laddawan; Sintunavarat, Wutiphol Orthogonal stability of the generalized quadratic functional equations in the sense of Rätz. (English) Zbl 1436.39015 Demonstr. Math. 52, 523-530 (2019). MSC: 39B52 39B55 39B72 39B82 47H10 46H25 PDF BibTeX XML Cite \textit{L. Aiemsomboon} and \textit{W. Sintunavarat}, Demonstr. Math. 52, 523--530 (2019; Zbl 1436.39015) Full Text: DOI
Park, Won-Gil; Bae, Jae-Hyeong Hyers-Ulam stability of quadratic forms in 2-normed spaces. (English) Zbl 1436.39018 Demonstr. Math. 52, 496-502 (2019). MSC: 39B52 39B72 39B82 PDF BibTeX XML Cite \textit{W.-G. Park} and \textit{J.-H. Bae}, Demonstr. Math. 52, 496--502 (2019; Zbl 1436.39018) Full Text: DOI
Lee, Yang-Hi; Kim, Gwang Hui Generalized Hyers-Ulam stability of the additive functional equation. (English) Zbl 1432.39024 Axioms 8, No. 2, Paper No. 76, 11 p. (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{G. H. Kim}, Axioms 8, No. 2, Paper No. 76, 11 p. (2019; Zbl 1432.39024) Full Text: DOI
Kumar, B. V. Senthil; Rassias, J. M.; Sabarinathan, S. Stabilities of various multiplicative inverse functional equations. (English) Zbl 1437.39012 Tbil. Math. J. 12, No. 4, 15-28 (2019). Reviewer: Choonkil Park (Seoul) MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{B. V. S. Kumar} et al., Tbil. Math. J. 12, No. 4, 15--28 (2019; Zbl 1437.39012) Full Text: DOI Euclid
Shah, R.; Zada, A. Hyers-Ulam-Rassias stability of impulsive Volterra integral equation via a fixed point approach. (English) Zbl 07179153 J. Linear Topol. Algebra 8, No. 4, 219-227 (2019). MSC: 45D05 47H10 39B82 PDF BibTeX XML Cite \textit{R. Shah} and \textit{A. Zada}, J. Linear Topol. Algebra 8, No. 4, 219--227 (2019; Zbl 07179153) Full Text: Link
EL-Fassi, Iz-Iddine On approximate solution of Drygas functional equation according to the Lipschitz criteria. (English) Zbl 1434.39020 Acta Univ. Sapientiae, Math. 11, No. 1, 66-77 (2019). MSC: 39B52 39B82 41A65 65Q20 PDF BibTeX XML Cite \textit{I.-I. EL-Fassi}, Acta Univ. Sapientiae, Math. 11, No. 1, 66--77 (2019; Zbl 1434.39020) Full Text: DOI
Sun, Wenlong; Jin, Yuanfeng; Park, Choonkil; Lu, Gang 3-variable double \(\rho \)-functional inequalities of drygas. (English) Zbl 1434.39023 J. Math. Inequal. 13, No. 4, 1235-1244 (2019). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 39B62 39B72 39B52 46B25 PDF BibTeX XML Cite \textit{W. Sun} et al., J. Math. Inequal. 13, No. 4, 1235--1244 (2019; Zbl 1434.39023) Full Text: DOI
El-Fassi, Iz-Iddine; Rassias, John Michael Stability and non-stability of generalized radical cubic functional equation in quasi-\(\beta\)-Banach spaces. (English) Zbl 1434.39021 Tbil. Math. J. 12, No. 3, 175-190 (2019). MSC: 39B52 39B82 46L05 PDF BibTeX XML Cite \textit{I.-I. El-Fassi} and \textit{J. M. Rassias}, Tbil. Math. J. 12, No. 3, 175--190 (2019; Zbl 1434.39021) Full Text: DOI Euclid