×

zbMATH — the first resource for mathematics

Coefficients of univalent functions. (English) Zbl 0372.30012

MSC:
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
30-02 Research exposition (monographs, survey articles) pertaining to functions of a complex variable
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C70 Extremal problems for conformal and quasiconformal mappings, variational methods
30C75 Extremal problems for conformal and quasiconformal mappings, other methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dov Aharonov, Proof of the Bieberbach conjecture for a certain class of univalent functions, Israel J. Math. 8 (1970), 102 – 104. · Zbl 0203.38402 · doi:10.1007/BF02771305 · doi.org
[2] D. Aharonov, Special topics in univalent functions, Lecture Notes, Univ. of Maryland, 1971.
[3] Dov Aharonov, On the Bieberbach conjecture for functions with a small second coefficient, Israel J. Math. 15 (1973), 137 – 139. · Zbl 0265.30016 · doi:10.1007/BF02764599 · doi.org
[4] D. Aharonov and S. Friedland, On an inequality connected with the coefficient conjecture for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A I 524 (1972), 14. · Zbl 0257.30012
[5] D. Aharonov and S. Friedland, On functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A I Math. 585 (1974), 18. · Zbl 0328.30006
[6] I. A. Aleksandrov and V. Ja. Gutljanskiĭ, On the coefficient problem in the theory of univalent functions, Dokl. Akad. Nauk SSSR 188 (1969), 266 – 268 (Russian).
[7] Albert Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139 – 169. · Zbl 0315.30021 · doi:10.1007/BF02392144 · doi.org
[8] I. E. Bazilevič, Supplement to the papers ”Zum Koeffizientenproblem der schlichten Funktionen” and ”Sur les théorèmes de Koebe-Bieberbach”, Mat. Sb. 2 (44) (1937), 689-698. (Russian). · Zbl 0018.14401
[9] I. E. Bazilevič, On distortion theorems and coefficients of univalent functions, Mat. Sbornik N.S. 28(70) (1951), 147 – 164 (Russian).
[10] I. E. Bazilevič, A criterion for univalence of regular functions and for dispersion of their coefficients, Mat. Sb. (N.S.) 74 (116) (1967), 133 – 146 (Russian).
[11] Ludwig Bieberbach, Über einige Extremalprobleme im Gebiete der konformen Abbildung, Math. Ann. 77 (1916), no. 2, 153 – 172 (German). · JFM 46.0549.01 · doi:10.1007/BF01456900 · doi.org
[12] L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss. (1916), 940-955. · JFM 46.0552.01
[13] M. Biernacki, Sur les coefficients tayloriens des fonctions univalentes, Bull. Acad. Polon. Sci. Cl. III. 4 (1956), 5 – 8 (French). · Zbl 0071.06903
[14] Daoud H. Bishouty, The Bieberbach conjecture for univalent functions with small second coefficients, Math. Z. 149 (1976), no. 2, 183 – 187. · Zbl 0314.30013 · doi:10.1007/BF01301575 · doi.org
[15] Enrico Bombieri, Sul problema di Bieberbach per le funzioni univalenti, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 35 (1963), 469 – 471 (Italian). · Zbl 0151.09303
[16] Enrico Bombieri, Sulla seconda variazione della funzione di Koebe, Boll. Un. Mat. Ital. (3) 22 (1967), 25 – 32 (Italian, with English summary). · Zbl 0143.09904
[17] Enrico Bombieri, On the local maximum property of the Koebe function, Invent. Math. 4 (1967), 26 – 67. · Zbl 0174.12301 · doi:10.1007/BF01404579 · doi.org
[18] Enrico Bombieri, A geometric approach to some coefficient inequalities for univalent functions, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 377 – 397. · Zbl 0186.13201
[19] D. A. Brannan, J. G. Clunie, and W. E. Kirwan, On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A I 523 (1973), 18. · Zbl 0257.30011
[20] Louis Brickman, Extreme points of the set of univalent functions, Bull. Amer. Math. Soc. 76 (1970), 372 – 374. · Zbl 0189.08802
[21] L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91 – 107. · Zbl 0227.30013
[22] Louis Brickman and Donald Wilken, Support points of the set of univalent functions, Proc. Amer. Math. Soc. 42 (1974), 523 – 528. · Zbl 0286.30013
[23] Z. Charzyński and M. Schiffer, A new proof of the Bieberbach conjecture for the fourth coefficient., Arch. Rational Mech. Anal. 5 (1960), 187 – 193 (1960). · Zbl 0099.05901 · doi:10.1007/BF00252902 · doi.org
[24] J. Clunie, On schlicht functions, Ann. of Math. (2) 69 (1959), 511 – 519. · Zbl 0089.05201 · doi:10.2307/1970020 · doi.org
[25] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215 – 216. · Zbl 0087.07704 · doi:10.1112/jlms/s1-34.2.215 · doi.org
[26] J. Clunie and P. L. Duren, Addendum: An arclength problem for close-to-convex functions, J. London Math. Soc. 41 (1966), 181 – 182. · Zbl 0136.38001 · doi:10.1112/jlms/s1-41.1.181-s · doi.org
[27] J. Clunie and Ch. Pommerenke, On the coefficients of univalent functions, Michigan Math. J. 14 (1967), 71 – 78. · Zbl 0177.33701
[28] J. Dieudonné, Sur les fonctions univalentes, C. R. Acad. Sci. Paris 192 (1931), 1148-1150. · JFM 57.0403.03
[29] N. Dunford and J. T. Schwartz, Linear operators, Vol. I, Interscience, New York, 1958. MR 22 #8302. · Zbl 0084.10402
[30] P. L. Duren, Coefficient estimates for univalent functions, Proc. Amer. Math. Soc. 13 (1962), 168 – 169. · Zbl 0119.29303
[31] P. L. Duren, An arclength problem for close-to-convex functions, J. London Math. Soc. 39 (1964), 757 – 761. · Zbl 0136.37904 · doi:10.1112/jlms/s1-39.1.757 · doi.org
[32] Peter L. Duren, Theory of \?^\? spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970.
[33] Peter L. Duren, Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 28 (1971), 169 – 172. · Zbl 0214.08701
[34] Peter L. Duren, Estimation of coefficients of univalent functions by a Tauberian remainder theorem, J. London Math. Soc. (2) 8 (1974), 279 – 282. · Zbl 0296.30010 · doi:10.1112/jlms/s2-8.2.279 · doi.org
[35] Peter L. Duren, Asymptotic behavior of coefficients of univalent functions, Advances in complex function theory (Proc. Sem., Univ. Maryland, College Park, Md., 1973 – 1974) Springer, Berlin, 1976, pp. 17 – 23. Lecture Notes in Math., Vol. 505.
[36] Peter L. Duren, Applications of the Garabedian-Schiffer inequality, J. Analyse Math. 30 (1976), 141 – 149. · Zbl 0334.30008 · doi:10.1007/BF02786709 · doi.org
[37] Peter Duren, Subordination, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), Springer, Berlin, 1977, pp. 22 – 29. Lecture Notes in Math., Vol. 599. · Zbl 0372.30013
[38] Peter L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. · Zbl 0514.30001
[39] P. L. Duren and M. Schiffer, The theory of the second variation in extremum problems for univalent functions, J. Analyse Math. 10 (1962/1963), 193 – 252. · Zbl 0112.30302 · doi:10.1007/BF02790308 · doi.org
[40] Gertraud Ehrig, The Bieberbach conjecture for univalent functions with restricted second coefficients, J. London Math. Soc. (2) 8 (1974), 355 – 360. · Zbl 0286.30008 · doi:10.1112/jlms/s2-8.2.355 · doi.org
[41] Gertraud Ehrig, Coefficient estimates concerning the Bieberbach conjecture, Math. Z. 140 (1974), 111 – 126. · Zbl 0285.30013 · doi:10.1007/BF01213950 · doi.org
[42] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89. · JFM 59.0347.04
[43] J. Feng and T. H. MacGregor, Estimates on integral means of the derivatives of univalent functions, J. Analyse Math. 29 (1976), 203-231. · Zbl 0371.30014
[44] Carl H. Fitzgerald, Quadratic inequalities and coefficient estimates for schlicht functions, Arch. Rational Mech. Anal. 46 (1972), 356 – 368. · Zbl 0242.30013 · doi:10.1007/BF00281102 · doi.org
[45] Schmuel Friedland, On a conjecture of Robertson, Arch. Rational Mech. Anal. 37 (1970), 255 – 261. · Zbl 0194.38502 · doi:10.1007/BF00251606 · doi.org
[46] P. R. Garabedian and M. Schiffer, A proof of the Bieberbach conjecture for the fourth coefficient, J. Rational Mech. Anal. 4 (1955), 427 – 465. · Zbl 0065.06902
[47] P. R. Garabedian and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. (2) 61 (1955), 116 – 136. · Zbl 0065.30901 · doi:10.2307/1969623 · doi.org
[48] P. R. Garabedian and M. Schiffer, The local maximum theorem for the coefficients of univalent functions, Arch. Rational Mech. Anal. 26 (1967), 1 – 32. · Zbl 0174.12302 · doi:10.1007/BF00283856 · doi.org
[49] P. R. Garabedian, G. G. Ross, and M. M. Schiffer, On the Bieberbach conjecture for even \?, J. Math. Mech. 14 (1965), 975 – 989. · Zbl 0141.26901
[50] G. M. Goluzin, Some bounds on the coefficients of univalent functions, Mat. Sb. 3 (45) (1938), 321-330. (Russian).
[51] G. Golusin, On distortion theorems and coefficients of univalent functions, Rec. Math. [Mat. Sbornik] N.S. 19(61) (1946), 183 – 202 (Russian, with English summary). · Zbl 0063.01668
[52] G. M. Goluzin, On distortion theorems and the coefficients of univalent functions, Mat. Sbornik N.S. 23(65) (1948), 353 – 360 (Russian).
[53] G. M. Goluzin, Some questions of the theory of univalent functions, Trudy Mat. Inst. Steklov. 27 (1949), 111 (Russian).
[54] G. M. Goluzin, On typically real functions, Mat. Sbornik N.S. 27(69) (1950), 201 – 218 (Russian).
[55] G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. · Zbl 0183.07502
[56] A. W. Goodman, Open problems on univalent and multivalent functions, Bull. Amer. Math. Soc. 74 (1968), 1035 – 1050. · Zbl 0182.40902
[57] A. W. Goodman, The valence of sums and products, Canad. J. Math. 20 (1968), 1173 – 1177. · Zbl 0157.40001 · doi:10.4153/CJM-1968-111-0 · doi.org
[58] Gerald S. Goodman, On the determination of univalent functions with prescribed initial coefficients, Arch. Rational Mech. Anal. 24 (1967), 78 – 81. · Zbl 0145.31504 · doi:10.1007/BF00251594 · doi.org
[59] A. Z. Grinšpan, Logarithmic coefficients of functions of class \?, Sibirsk. Mat. Ž. 13 (1972), 1145 – 1157, 1199 (Russian).
[60] T. H. Gronwall, Some remarks on conformal representation, Ann. of Math. (2) 16 (1914/15), no. 1-4, 72 – 76. · JFM 45.0672.01 · doi:10.2307/1968044 · doi.org
[61] Helmut Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z. 45 (1939), no. 1, 29 – 61 (German). · Zbl 0022.15103 · doi:10.1007/BF01580272 · doi.org
[62] W. K. Hayman, The asymptotic behaviour of \?-valent functions, Proc. London Math. Soc. (3) 5 (1955), 257 – 284. · Zbl 0067.30104 · doi:10.1112/plms/s3-5.3.257 · doi.org
[63] W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48, Cambridge University Press, Cambridge, 1958. · Zbl 0082.06102
[64] W. K. Hayman, Bounds for the large coefficients of univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I, no. 250/13 (1958), 13. · Zbl 0102.06501
[65] W. K. Hayman, On successive coefficients of univalent functions, J. London Math. Soc. 38 (1963), 228 – 243. · Zbl 0111.27502 · doi:10.1112/jlms/s1-38.1.228 · doi.org
[66] W. K. Hayman, Coefficient problems for univalent functions and related function classes, J. London Math. Soc. 40 (1965), 385 – 406. · Zbl 0132.06001 · doi:10.1112/jlms/s1-40.1.385 · doi.org
[67] W. Hengartner and G. Schober, Extreme points for some classes of univalent functions, Trans. Amer. Math. Soc. 185 (1973), 265 – 270. · Zbl 0278.30020
[68] David Horowitz, A refinement for coefficient estimates of univalent functions, Proc. Amer. Math. Soc. 54 (1976), 176 – 178. · Zbl 0294.30006
[69] David Horowitz, Coefficient estimates for univalent polynomials, J. Analyse Math. 31 (1977), 112 – 124. · Zbl 0347.30009 · doi:10.1007/BF02813300 · doi.org
[70] J. A. Hummel, Bounds for the coefficient body of univalent functions, Arch. Rational Mech. Anal. 36 (1970), 128 – 134. · Zbl 0193.37101 · doi:10.1007/BF00250813 · doi.org
[71] J. A. Hummel, Lectures on variational methods in the theory of univalent functions, Lecture Notes, Univ. of Maryland, 1972. · Zbl 0253.30012
[72] L. P. Il\(^{\prime}\)ina, The relative growth of nearby coefficients of schlicht functions, Mat. Zametki 4 (1968), 715 – 722 (Russian).
[73] L. P. Il\(^{\prime}\)ina, Estimates for the coefficients of univalent functions in dependence on the second coefficient, Mat. Zametki 13 (1973), 351 – 357 (Russian).
[74] James A. Jenkins, On a problem of Gronwall, Ann. of Math. (2) 59 (1954), 490 – 504. · Zbl 0059.06104 · doi:10.2307/1969714 · doi.org
[75] James A. Jenkins, A general coefficient theorem, Trans. Amer. Math. Soc. 77 (1954), 262 – 280. · Zbl 0058.30502
[76] James A. Jenkins, Univalent functions and conformal mapping, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. · Zbl 0083.29606
[77] James A. Jenkins, On certain coefficients of univalent functions. II, Trans. Amer. Math. Soc. 96 (1960), 534 – 545. · Zbl 0103.30003
[78] James A. Jenkins, On certain coefficients of univalent functions, Analytic functions, Princeton Univ. Press, Princeton, N.J., 1960, pp. 159 – 194. James A. Jenkins, An extension of the general coefficient theorem, Trans. Amer. Math. Soc. 95 (1960), 387 – 407. · Zbl 0103.30002
[79] James A. Jenkins, Some area theorems and a special coefficient theorem, Illinois J. Math. 8 (1964), 80 – 99. · Zbl 0131.07601
[80] Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169 – 185 (1953). · Zbl 0048.31101
[81] Yoshihisa Kubota, A coefficient inequality for certain meromorphic univalent functions, Kōdai Math. Sem. Rep. 26 (1974/75), 85 – 94. · Zbl 0297.30012
[82] Yoshihisa Kubota, On the fourth coefficient of meromorphic univalent functions, Kōdai Math. Sem. Rep. 26 (1974/75), 267 – 288. · Zbl 0304.30011
[83] Kung Sun, Contributions to the theory of schlicht functions. II: The coefficient problem, Sci. Sinica 4 (1955), 359-373. · Zbl 0068.29006
[84] Принцип площадей в теории однолистных функций., Издат. ”Наука”, Мосцощ, 1975 (Руссиан).
[85] George B. Leeman Jr., The seventh coefficient of odd symmetric univalent functions, Duke Math. J. 43 (1976), no. 2, 301 – 307. · Zbl 0336.30004
[86] V. I. Levin, Ein Beitrag zum Koeffizientenproblem der schlichten Funktionen, Math. Z. 38 (1933), 306-311. · Zbl 0008.11903
[87] V. I. Levin, Some remarks on the coefficients of schlicht functions, Proc. London Math. Soc. (2) 39 (1935), 467-480. · Zbl 0012.17103
[88] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481-519. · JFM 51.0247.03
[89] J. E. Littlewood, On the coefficients of schlicht functions, Quart. J. Math. Oxford Ser. 9 (1938), 14-20. · Zbl 0018.26103
[90] J. E. Littlewood and R. E. A. C. Paley, A proof that an odd schlicht function has bounded coefficients, J. London Math. Soc. 7 (1932), 167-169. · Zbl 0005.01803
[91] C. Loewner (K. Löwner), Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises |z| < 1, die durch Funktionen mit nicht verschwindender Ableitung geliefert werden, Ber. Verh. Sächs. Ges. Wiss. Leipzig 69 (1917), 89-106. · JFM 46.0556.02
[92] Karl Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103 – 121 (German). · JFM 49.0714.01 · doi:10.1007/BF01448091 · doi.org
[93] A. J. Lohwater, G. Piranian, and W. Rudin, The derivative of a schlicht function, Math. Scand. 3 (1955), 103 – 106. · Zbl 0065.06901 · doi:10.7146/math.scand.a-10430 · doi.org
[94] K. W. Lucas, On successive coefficients of areally mean \?-valent functions, J. London Math. Soc. 44 (1969), 631 – 642. · Zbl 0172.37401 · doi:10.1112/jlms/s1-44.1.631 · doi.org
[95] Thomas H. MacGregor, Applications of extreme-point theory to univalent functions, Michigan Math. J. 19 (1972), 361 – 376. · Zbl 0257.30017
[96] F. Marty, Sur le module des coefficients de Maclaurin d’une fonction univalente, C. R. Acad. Sci. Paris 198 (1934), 1569-1571. · JFM 60.0282.02
[97] I. M. Milin, The area method in the theory of univalent functions, Dokl. Akad. Nauk SSSR 154 (1964), 264 – 267 (Russian). · Zbl 0146.10205
[98] I. M. Milin, A bound for the coefficients of schlicht functions, Dokl. Akad. Nauk SSSR 160 (1965), 769 – 771 (Russian).
[99] I. M. Milin, The coefficients of schlicht functions, Dokl. Akad. Nauk SSSR 176 (1967), 1015 – 1018 (Russian).
[100] I. M. Milin, Adjacent coefficients of univalent functions, Dokl. Akad. Nauk SSSR 180 (1968), 1294 – 1297 (Russian). · Zbl 0176.03202
[101] I. M. Milin, Hayman’s regularity theorem for the coefficients of univalent functions, Dokl. Akad. Nauk SSSR 192 (1970), 738 – 741 (Russian). · Zbl 0209.10701
[102] Однолистные функции и ортонормированные системы, Издат. ”Наука”, Мосцощ, 1971 (Руссиан). · Zbl 0228.30011
[103] Zeev Nehari, On the coefficients of univalent functions, Proc. Amer. Math. Soc. 8 (1957), 291 – 293. · Zbl 0078.06402
[104] Z. Nehari and E. Netanyahu, On the coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 8 (1957), 15 – 23. · Zbl 0079.10004
[105] E. Netanyahu, On univalent functions in the unit disk whose image contains a given disk, J. Analyse Math. 23 (1970), 305 – 322. · Zbl 0222.30014 · doi:10.1007/BF02795507 · doi.org
[106] R. Nevanlinna, Über die konforme Abbildung von Sterngebieten, Översikt av Finska Vetenskaps-Soc. Förh. 63(A) (1920-21), no. 6, 1-21. · JFM 48.0403.14
[107] Arthur Obrock, An inequality for certain schlicht functions, Proc. Amer. Math. Soc. 17 (1966), 1250 – 1253. · Zbl 0156.29902
[108] Mitsuru Ozawa, On the Bieberbach conjecture for the sixth coefficient, Kōdai Math. Sem. Rep. 21 (1969), 97 – 128. · Zbl 0184.10502
[109] Mitsuru Ozawa, An elementary proof of the Bieberbach conjecture for the sixth coefficient, Kōdai Math. Sem. Rep. 21 (1969), 129 – 132. · Zbl 0202.07201
[110] Roger N. Pederson, A proof of the Bieberbach conjecture for the sixth coefficient, Arch. Rational Mech. Anal. 31 (1968/1969), 331 – 351. · Zbl 0184.10501 · doi:10.1007/BF00251415 · doi.org
[111] Roger N. Pederson, A note on the local coefficient problem, Proc. Amer. Math. Soc. 20 (1969), 345 – 347. · Zbl 0184.10404
[112] R. Pederson and M. Schiffer, A proof of the Bieberbach conjecture for the fifth coefficient, Arch. Rational Mech. Anal. 45 (1972), 161 – 193. · Zbl 0241.30025 · doi:10.1007/BF00281531 · doi.org
[113] Albert Pfluger, Lineare Extremalprobleme bei schlichten Funktionen, Ann. Acad. Sci. Fenn. Ser. A I 489 (1971), 32 (German). · Zbl 0225.30019
[114] G. Pólya and I. J. Schoenberg, Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific J. Math. 8 (1958), 295 – 334. · Zbl 0084.27901
[115] Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221 – 235. · Zbl 0116.05701
[116] Ch. Pommerenke, Über die Faberschen Polynome schlichter Funktionen, Math. Z. 85 (1964), 197 – 208 (German). · Zbl 0138.29901 · doi:10.1007/BF01112141 · doi.org
[117] Ch. Pommerenke, On the coefficients of univalent functions, J. London Math. Soc. 42 (1967), 471 – 474. · Zbl 0177.33602 · doi:10.1112/jlms/s1-42.1.471 · doi.org
[118] Christian Pommerenke, Relations between the coefficients of a univalent function, Invent. Math. 3 (1967), 1 – 15. · Zbl 0165.09201 · doi:10.1007/BF01425487 · doi.org
[119] Ch. Pommerenke, On a variational method for univalent functions, Michigan Math. J. 17 (1970), 1 – 3. · Zbl 0175.36504
[120] Christian Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. · Zbl 0298.30014
[121] I. I. Privalov, On functions giving a univalent conformal mapping, Mat. Sb. 31 (1924), 350-365. (Russian).
[122] Maxwell O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3 (1955), 59 – 62. · Zbl 0070.07302
[123] M. S. Robertson, A remark on the odd schlicht functions, Bull. Amer. Math. Soc. 42 (1936), 366-370. · Zbl 0014.40702
[124] M. S. Robertson, The generalized Bieberbach conjecture for subordinate functions, Michigan Math. J. 12 (1965), 421 – 429. · Zbl 0141.08205
[125] M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc. 76 (1970), 1 – 9. · Zbl 0191.09101
[126] M. S. Robertson, Quasi-subordinate functions, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 311 – 330. · Zbl 0211.09902
[127] Werner Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), no. 1, 93 – 121 (German). · Zbl 0003.39303 · doi:10.1007/BF01186552 · doi.org
[128] W. Rogosinski, On subordinate functions, Proc. Cambridge Philos. Soc. 35 (1939), 1-26. · JFM 65.0332.04
[129] Werner Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48 – 82. · Zbl 0028.35502 · doi:10.1112/plms/s2-48.1.48 · doi.org
[130] St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119 – 135. · Zbl 0261.30015 · doi:10.1007/BF02566116 · doi.org
[131] A. C. Schaeffer and D. C. Spencer, The coefficients of schlicht functions, Duke Math. J. 10 (1943), 611 – 635. · Zbl 0060.20404
[132] A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, American Mathematical Society Colloquium Publications, Vol. 35, American Mathematical Society, New York, N. Y., 1950. With a Chapter on the Region of the Derivative of a Schlicht Function by Arthur Grad. · Zbl 0049.06003
[133] Menahem Schiffer, Sur un problème d’extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48 – 55 (French). · Zbl 0018.40902
[134] M. Schiffer, A method of variation within the family of simple functions, Proc London Math. Soc. (2) 44 (1938), 432-449. · Zbl 0019.22201
[135] M. Schiffer, On the coefficients of simple functions, Proc London Math. Soc. (2) 44 (1938), 450-452. · Zbl 0019.22202
[136] Menahem Schiffer, Variation of the Green function and theory of the \?-valued functions, Amer. J. Math. 65 (1943), 341 – 360. · Zbl 0060.23705 · doi:10.2307/2371820 · doi.org
[137] R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, Interscience Publishers, Inc., New York, N.Y., 1950. Appendix by M. Schiffer. · Zbl 0040.34603
[138] M. M. Schiffer, Applications of variational methods in the theory of conformal mapping., Calculus of variations and its applications. Proceedings of Symposia in Applied Mathematics, Vol. 8, For the American Mathematical Society: McGraw-Hill Book Co., Inc., New York-Toronto-London, 1958, pp. 93 – 113.
[139] Menahem Schiffer, Univalent functions whose \? first coefficients are real, J. Analyse Math. 18 (1967), 329 – 349. · Zbl 0153.39703 · doi:10.1007/BF02798052 · doi.org
[140] Menahem Schiffer, On the coefficient problem for univalent functions, Trans. Amer. Math. Soc. 134 (1968), 95 – 101. · Zbl 0165.40301
[141] Glenn Schober, Univalent functions — selected topics, Lecture Notes in Mathematics, Vol. 478, Springer-Verlag, Berlin-New York, 1975. · Zbl 0306.30018
[142] I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28. · JFM 42.0367.01
[143] T. Sheil-Small, On the convolution of analytic functions, J. Reine Angew. Math. 258 (1973), 137 – 152. · Zbl 0267.30012 · doi:10.1515/crll.1973.258.137 · doi.org
[144] N. A. Širokov, Hayman’s regularity theorem, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 24 (1972), 182 – 200 (Russian).
[145] O. Szász, Über Funktionen, die den Einheitskreis schlicht abbilden, Jber. Deutsch. Math.-Verein. 42 (1933), 73-75. · JFM 58.1095.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.