×

zbMATH — the first resource for mathematics

Algebraic theory of block codes detecting independent errors. (English. Russian original) Zbl 0418.94011
J. Sov. Math. 7, 243-271 (1977); translation from Itogi Nauki Tekh., Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern. 13, 189-234 (1976).
MSC:
94B05 Linear codes, general
94-02 Research exposition (monographs, survey articles) pertaining to information and communication theory
94Bxx Theory of error-correcting codes and error-detecting codes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. E. Alekseev and Al. A. Markov, ?Combinatory-algebraic problems in coding theory,? in: Selected Papers of the Intercollegiate Symposium on Applied Mathematics and Cybernetics, at Gor’kii, 1967 [in Russian], Nauka, Moscow (1973), pp. 283?285.
[2] V. I. Andrianov and V. N. Saskovets, ?Decyclic codes,? Kibernetika, No. 1, 11?16 (1965). · Zbl 0143.41501
[3] V. A. Arakelov and G. M. Tenegol’ts, ?Certain properties of recursive periodic sequences,? Tr. Vychisl. Tsentra Akad. Nauk ArmSSR i Erevan. Un-ta,6, 18?28 (1970).
[4] L. A. Bassalygo, ?New upper bounds for error-correcting codes,? Probl. Peredachi Inform.,1, No. 4, 41?44 (1965). · Zbl 0259.94022
[5] L. A. Bassalygo, ?Generalization of the Lloyd theorem to the case of an arbitrary alphabet,? Probl. Upr. i Teorii Inform. (Hungarian),2, No. 2, 133?137, (Russian), 25?28 (English) (1973). · Zbl 0317.94015
[6] L. A. Bassalygo, ?Necessary condition for existence of perfect codes in the Lee metric,? Matem. Zametki,15, No. 2, 313?320 (1974). · Zbl 0293.94008
[7] L. A. Bassalygo, G. V. Zaitsev, and V. A. Zinov’ev, ?On uniformly packed codes,? Probl. Peredachi Inform.,10, No. 1, 9?14 (1974).
[8] L. A. Bassalygo, V. A. Zinov’ev, and V. K. Leont’ev, ?Perfect codes over arbitrary alphabets,? in: Third International Symposium on Information Theory, Abstracts of the Papers [in Russian], Moscow-Tallin (1973), Part II, pp. 23?28.
[9] L. A. Bassalygo, V. A. Zinov’ev, V. K. Leont’ev, and N. I. Fel’dman, ?Nonexistence of perfect codes over certain composite alphabets,? Probl. Peredachi Inform.,11, No. 3, 3?13 (1975).
[10] B. I. Belov, V. N. Logachev, and V. P. Sandimirov, ?Construction of a class of linear binary codes achieving the Varshamov-Greismer bound.? Probl. Peredachi Inform.,10, No. 3, 36?44 (1974).
[11] S. D. Berman, ?On the theory of block codes,? Kibernetika, No. 1, 31?39 (1967). · Zbl 0216.55803
[12] S. D. Berman, ?Semisimple cyclic and Abelian codes. II,? Kibernetika, No. 3, 21?30 (1967). · Zbl 1026.94551
[13] S. D. Berman and A. B. Yudanina, ?Codes with generalized majority decoding and packed codes,? Probl. Peredachi Inform.,6, No. 1, 6?19 (1970).
[14] É. L. Blokh and V. V. Zyablov, ?Concatenated iterated codes and their use for correcting bursts of errors,? in: Transmission of Discrete Messages by Channels with Error Bursts [in Russian], Nauka, Moscow (1972), pp. 5?8.
[15] É. L. Blokh and V. V. Zyablov, ?On the existence of linear binary concatenated codes with optimal correcting properties,? Probl. Peredachi Inform.,9, No. 4, 3?10 (1973). · Zbl 0309.94031
[16] É. L. Blokh and V. V. Zyablov, ?Coding and decoding of a generalized concatenated code,? in: Third International Symposium on Information Theory, Abstracts of the Papers [in Russian], Moscow-Tallin (1973), Part II, pp. 36?40. · Zbl 0309.94031
[17] É. L. Blokh and V. V. Zyablov, ?Coding of generalized concatenated codes,? Probl. Peredachi Inform.,10, No. 3, 45?50 (1974). · Zbl 0309.94030
[18] É. L. Blokh and V. V. Zyablov, ?Potential and realizable correcting properties of concatenated codes on the basis of Reed -Solomon codes,? in: Increasing Validity of Transmission of Digital Information by Discrete Channels [in Russian], Nauka, Moscow (1974), pp. 5?17.
[19] A. I. Bol’shev, ?Spectra of binary cyclic codes,? in: Informational Materials of the Scientific Soviet on Complex Problems of ?Cybernetics? of the Academy of Sciences USSR [in Russian], No. 3(50), 15?22 (1971).
[20] R. R. Varshamov, ?Estimate of the number of signals in error-correcting codes,? Dokl. Akad. Nauk SSSR,117, No. 5, 739?741 (1957). · Zbl 0081.36905
[21] R. R. Varshamov, ?On one theorem from the theory of reducibility of polynomials,? Dokl. Akad. Nauk SSSR,156, No. 6, 1308?1311 (1964).
[22] R. R. Varshamov and G. G. Ananiashvili, ?On the theory of reducibility of polynomials in a finite field,? in: Abstract and Structural Theory of Relay Devices [in Russian], Nauka, Moscow (1966), pp. 134?138.
[23] R. R. Varshamov and G. A. Garakov, ?On the theory of self-dual polynomials over a Galois field,? Tr. Vychisl. Tsentra Akad. Nauk ArmSSR i Erevan. Un-ta,6, 5?17 (1970). · Zbl 0228.12003
[24] R. R. Varshamov and V. I. Tairyan, ?On one method in the theory of reducibility of polynomials over Galois fields,? in: Fifth Conference on Coding Theory and Transmission of Information. II. Coding Theory [in Russian], Moscow-Gor’kii (1972), pp. 25?28.
[25] R. R. Varshamov and G. M. Tenengol’ts, ?On one class of cyclic codes,? in: Problems of Cybernetics [in Russian], Vol. 22, Nauka, Moscow (1970), pp. 157?166. · Zbl 0216.55804
[26] Yu. L. Vasil’ev, ?On unblocked densely packed codes,? in: Problems of Cybernetics [in Russian], Vol. 8 (1962), pp. 337?339.
[27] Dzh. Venturini, ?Construction of maximal linear binary codes in the case of large distances,? in: Problems of Cybernetics [in Russian], Vol. 16 (1966), pp. 231?238. · Zbl 0203.15603
[28] É. M. Gabidulin and V. R. Sidorenko, ?Upper bounds on the cardinality of balanced binary codes,? in: Sixth Symposium on Problems of Redundancy in Information Systems [in Russian], Part 1, Leningrad (1974), pp. 13?17.
[29] G. A. Garakov, ?On the cycles of one algorithm for synthesizing irreducible polynomials over field GF(2),? Probl. Peredachi Inform.,3, No. 4, 100?101 (1967).
[30] S. I. Gel’fand and R. L. Dobrushin, ?Complexity of realization of asymptotically optimal codes by circuits of constant depth,? Probl. Upr. i Teorii Inform. (Hungarian),1, Nos. 3?4, 197?215 (1972).
[31] V. D. Goppa, ?A new class of linear correcting codes,? Probl. Peredachi Inform.,6, No. 3, 24?30 (1970). · Zbl 0292.94011
[32] V. D. Goppa, ?Rational representation of codes and (L, g)-codes,? Probl. Peredachi Inform.,7, No. 3, 41?49 (1971).
[33] V. D. Goppa, ?Some codes constructed on the base of (L, g)-codes,? Probl. Peredachi Inform.,8, No. 2, 107?109 (1972).
[34] I. I. Grushko, ?On the optimality of one class of piecewise-cyclic codes,? in: Increasing Validity of Transmission of Digital Information by Discrete Channels [in Russian], Nauka, Moscow (1974), pp. 18?20.
[35] V. I. Dyn’kin and D. A. Agaronov, ?Method of expanding polynomials in a finite field,? Probl. Peredachi Inform.,6, No. 3, 82?85 (1970).
[36] V. I. Dyn’kin and G. M. Tenengol’ts, ?On one class of cyclic codes with a majority decoding circuit,? Probl. Peredachi Inform.,5, No. 1, 3?15 (1969).
[37] G. V. Zaitsev and V. A. Zinov’ev, ?On one generalization of concatenated codes,? in: Sixth Symposium on Problems of Redundancy in Information Systems [in Russian], Part 1, Leningrad (1974), pp. 31?33.
[38] G.V. Zaitsev, V. A. Zinov’ev, and N. V. Semakov, ?On duality of the nonlinear Preparata and Kerdock codes,? in: Fifth Conference on Coding Theory and Transmission of Information. II. Coding Theory [in Russian], Moscow-Gor’kii (1972), pp. 55?58.
[39] V. A. Zinov’ev and V. K. Leont’ev, ?On perfect codes,? Probl. Peredachi Inform.,8, No. 1, 26?35 (1972).
[40] V. A. Zinov’ev and V. K. Leont’ev, ?Nonexistence of perfect codes over Galois fields,? Probl. Upr. i Teorii Inform. (Hungarian),2, No. 2, 123?132 (Russian), 16?24 (English) (1973).
[41] V. V. Zyablov, ?Piecewise-cyclic codes and majority circuits for decoding them,? Probl. Peredachi Inform.,4, No. 2, 31?37 (1968).
[42] V. V. Zyablov, ?Analysis of correcting properties of iterated and concatenated codes,? in: Transmission of Digital Information by Channels with Memory [in Russian], Nauka, Moscow (1970), pp. 76?85.
[43] V. V. Zyablov, ?Estimate of complexity of design of binary linear concatenated codes,? Probl. Peredachi Inform.,7, No. 1, 5?13 (1971).
[44] G. K. Kladov, ?Cyclic analogy to radical codes,? in: Computing Mathematics and Computation Technology [in Russian], Vol. II, Khar’kov (1971), pp. 62?63.
[45] M. V. Kozlov, ?On correcting capabilities of linear codes,? Dokl. Akad. Nauk SSSR,186, No. 2, 275?278 (1969).
[46] M. V. Kozlov, ?On an ensemble of codes with small density of ones in the check matrix,? Probl. Peredachi Inform.,7, No. 3, 107?109 (1971).
[47] V. D. Kolesnik, ?Contracted cyclic codes with majority decoding,? in: Sixth Symposium on Problems of Redundancy in Information Systems [in Russian], Part I, Leningrad (1974), pp. 42?47.
[48] V. D. Kolesnik and E. T. Mironchikov, ?Certain cyclic codes and circuits for decoding by majority of checks,? Probl. Peredachi Inform.,1, No. 2, 3?17 (1965). · Zbl 0259.94019
[49] V. D. Kolesnik and E. T. Mironchikov, ?On a class of cyclic codes with majority decoding circuits,? Tr. Leningr. In-ta Aviats. Priborostr., No.48, 148?159 (1966).
[50] V. D. Kolesnik and E. T. Mironchikov, ?Cyclic Reed-Muller codes and their decoding,? Probl. Peredachi Inform.,4, No. 4, 20?25 (1968). · Zbl 0309.94025
[51] V. D. Kolesnik and E. T. Mironchikov, ?Decoding Cyclic Codes [in Russian], Svyaz’, Moscow (1968). · Zbl 0157.49101
[52] V. D. Kolesnik and E. T. Mironchikov, ?On the quantity of information symbols of polynomial codes,? Tr. Leningr. In-ta Aviats. Priborostr., No. 74, 60?70 (1972).
[53] V. I. Korzhik, ?Interconnection of properties of a binary block code and its null space,? Probl. Peredachi Inform.,2, No. 1, 91?95 (1966).
[54] V. I. Korzhik, ?One estimate of dmin for cyclic codes,? Probl. Peredachi Inform.,2, No. 2, 78 (1966).
[55] V. N. Koshelev, ?On certain properties of random block codes of great length,? Probl. Peredachi Inform.,1, No. 4, 45?48 (1965).
[56] V. I. Levenshtein, ?On upper limits for codes with fixed weight of vectors,? Probl. Peredachi Inform.,7, No. 4, 3?12 (1971).
[57] V. I. Levenshtein, ?On minimal redundancy of binary error-correcting codes,? Probl. Peredachi Inform.,10, No. 2, 26?42 (1974).
[58] V. K. Leont’ev, ?On one property of densely packed codes,? in: Discrete Analysis [in Russian], Vol. 2, Nauka, Novosibirsk (1964), pp. 56?58.
[59] V. K. Leont’ev, On the lower bound of cardinality for almost all codes,? in: Discrete Analysis [in Russian], Vol. 8, Nauka, Novosibirsk (1966), pp. 49?54.
[60] V. K. Leont’ev, ?On one hypothesis concerning Bose-Chaudhuri codes,? Probl. Peredachi Inform.,4, No. 1, 83?85 (1968).
[61] V. K. Leont’ev, ?On spectra of block codes,? in: Second International Symposium on Information Theory, September 2?8, 1971, Abstracts of the Papers [in Russian], Tsakhkadzor, ArmSSR, Moscow-Erevan (1971), pp. 153?155.
[62] V. K. Leont’ev, ?Spectra of block codes,? in: Third International Symposium on Information Theory, Abstracts of the Papers [in Russian], Part II, Moscow-Tallin (1973), pp. 102?106.
[63] L. E. Mazur, ?On one class of polynomial codes,? Probl. Peredachi Inform.,8, No. 4, 99?101 (1972).
[64] L. E. Mazur, ?On the minimal code distance of one class of subcodes of Reed-Solomon codes,? Probl. Peredachi Inform.,9, No. 2, 104?106 (1973).
[65] A. S. Marchukov, ?On sums of product codes,? Probl. Peredachi Inform.,4, No. 2, 11?20 (1968). · Zbl 0256.94007
[66] E. T. Mironchikov and G. V. Presnyakova, ?On cyclic codes,? Probl. Peredachi Inform.,4, No. 2, 19?22 (1969). · Zbl 0295.94028
[67] S. Sh. Oganesyan and V. G. Yagdzhyan, ?Finding cyclic representatives in binary cyclic alphabets,? Tr. Vychisl. Tsentra Akad. Nauk ArmSSR i Erevan. Un-ta,6, 35?38 (1970).
[68] S. Sh. Oganesyan and V. G. Yagdzhyan, ?Uniting cyclic representatives by identical weights in binary alphabets,? Tr. Vychisl. Tsentra Akad. Nauk ArmSSR i Erevan. Un-ta,6, 39?48 (1970).
[69] S. Sh. Oganesyan and V. G. Yagdzhyan, ?Weight spectra for certain classes of correcting cyclic codes,? Probl. Peredachi Inform.,6, No. 3, 31?37 (1970).
[70] S. Sh. Oganesyan and V. G. Yagdzhyan, ?Class of optimal cyclic codes to base p,? Probl. Peredachi Inform.,8, No. 2, 109?111 (1972). · Zbl 0262.94006
[71] S. Sh. Oganesyan, V. I. Tairyan, and V. G. Yagdzhyan, ?Partition of cyclic codes into balanced classes,? Probl. Upr. i Teorii Inform. (Hungarian),3, No. 2, 117?125 (Russian), 13?21 (English) (1974). · Zbl 0322.94002
[72] N. V. Semakov and V. A. Zinov’ev, ?Equidistant q-ary codes with maximal distance and solvable balanced incomplete block design,? Probl. Peredachi Inform.,4, No. 2, 3?10 (1968).
[73] N. V. Semakov and V. A. Zinov’ev, ?Perfect and quasiperfect balanced codes,? Probl. Peredachi Inform.,5, No. 2, 14?18 (1969).
[74] N. V. Semakov and V. Z. Zinov’ev, ?Balanced codes and tactical configurations,? Probl. Peredachi Inform.,5, No. 3, 28?36 (1969).
[75] N. V. Semakov, V. A. Zinov’ev, and G. V. Zaitsev, ?Class of maximal equidistant codes,? Probl. Peredachi Inform.,5, No. 2, 84?87 (1969).
[76] N. V. Semakov, V. A. Zinov’ev, and G. V. Zaitsev, ?On the interconnections of the Hamming, Preparata, and Golay codes and of the extended Hamming codes,? in: Second International Symposium on Information Theory, September 2?8, 1971, Abstracts of the Papers [in Russian], Tsakhkadzor, ArmSSR, Moscow-Erevan (1971), pp. 227?230.
[77] N. V. Semakov, V. A. Zinov’ev, and G. V. Zaitsev, ?Uniformly packed codes,? Probl. Peredachi Inform.,7, No. 1, 38?50 (1971).
[78] V. M. Sidel’nikov, ?On the spectrum of weights of the BCH codes,? Probl. Peredachi Inform.,7, No. 1, 14?22 (1971).
[79] V. M. Sidel’nikov, ?On mutual correlation of sequences,? in: Problems of Cybernetics [in Russian], Vol. 24, Nauka, Moscow (1971), pp. 15?42.
[80] V. M. Sidel’nikov, ?Upper bound on the number of points of a binary code with specified code distance,? Probl. Peredachi Inform.,10, No. 2, 43?51 (1974).
[81] O. B. Sokolov and I. I. Enikeev, ?Generalized Reed-Muller codes,? Uch. Zap. Kazansk. Universiteta,124, No. 2, 112?129 (1974).
[82] O. B. Sokolov and I. I. Enikeev, ?Representation of Reed-Muller codes in characteristic form,? Uch. Zap. Kazansk. Universiteta,127, No. 3, 62?73 (1969).
[83] V. I. Tairyan and G. G. Khachatryan, ?On the determination of H-orbits of cyclic FG-codes of arbitrary lengths,? Dokl. Akad. Nauk ArmSSR,58, No. 3, 139?144 (1974). · Zbl 0337.94008
[84] G. M. Tenengol’ts, ?A new class of cyclic correcting codes,? in: Third Conference on Information Transmission and Coding Theory [in Russian], Sec. 1, Nauka, Moscow (1967), pp. 18?28.
[85] P. E. Allard, S. G. S. Shiva, and S. E. Tavares, ?A note on the decomposition of cyclic codes into cyclic classes,? Inform. and Contr.,22, No. 1, 100?106 (1973). · Zbl 0271.94012 · doi:10.1016/S0019-9958(73)90518-4
[86] D. R. Anderson, ?A new class of cyclic codes,? SIAM J. Appl. Math.,16, 181?197 (1968). · Zbl 0157.49102 · doi:10.1137/0116016
[87] E. F. Assmus, Jr. and H. F. Mattson, Jr., ?Perfect codes and the Mathieu groups,? Arch. Math.,17, No. 2, 121?135 (1966). · Zbl 0144.26203 · doi:10.1007/BF01899857
[88] E. F. Assmus, Jr. and H. F. Mattson, Jr., ?On tactical configurations and error-correcting codes,? J. Combin. Theory,2, No. 3, 243?257 (1967). · Zbl 0189.19101 · doi:10.1016/S0021-9800(67)80025-5
[89] E. F. Assmus, Jr. and H. F. Mattson, Jr., ?New 5-designs,? J. Combin. Theory,6, No. 2, 122?151 (1969). · Zbl 0179.02901 · doi:10.1016/S0021-9800(69)80115-8
[90] E. F. Assmus, Jr. and H. F. Mattson, Jr., ?On weights in quadratic-residue codes,? Discrete Math.,3, Nos. 1?3, 1?20 (1972). · Zbl 0305.94013 · doi:10.1016/0012-365X(72)90021-0
[91] E. F. Assmus, Jr. and H. F. Mattson, Jr., ?Constructions of self-orthogonal codes,? Discrete Math.,3, Nos. 1?3, 21?32 (1972). · Zbl 0305.94014 · doi:10.1016/0012-365X(72)90022-2
[92] E. F. Assmus, Jr. and H. F. Mattson, Jr., ?Coding and combinatorics,? SIAM Rev.,16, No. 3, 349?388 (1974). · Zbl 0268.94002 · doi:10.1137/1016056
[93] L. D. Baumert and R. J. McEliece, ?Weights of irreducible cyclic codes,? Inform. and Contr.;20, No. 2, 158?175 (1972). · Zbl 0239.94007 · doi:10.1016/S0019-9958(72)90354-3
[94] E. R. Berger, ?Some additional upper bounds for fixed-weight codes of specified minimum distance,? IEEE Trans. Inform. Theory,13, No. 2, 307?308 (1967). · Zbl 0149.37403 · doi:10.1109/TIT.1967.1053995
[95] E. R. Berlekamp, ?The enumeration of information symbols in BCH codes,? Bell Syst. Techn. J.,46, No. 8, 1861?1880 (1967). · Zbl 0173.21202 · doi:10.1002/j.1538-7305.1967.tb03175.x
[96] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York (1968). · Zbl 0988.94521
[97] E. R. Berlekamp, ?Factoring polynomials over large finite fields,? Math. Comput.,24, No. 111, 713?735 (1970). · Zbl 0247.12014 · doi:10.1090/S0025-5718-1970-0276200-X
[98] E. R. Berlekamp, ?The weight enumerators for certain subcodes of the second-order binary Reed-Muller codes,? Inform. and Contr.,17, No. 5, 485?500 (1970). · Zbl 0211.51304 · doi:10.1016/S0019-9958(70)90399-2
[99] E. R. Berlekamp, ?Some mathematical properties of a scheme for reducing the bandwidth of motion pictures by Hadamard smearing,? Bell Syst. Techn. J.,49, No. 6, 969?986 (1970). · Zbl 0197.45401 · doi:10.1002/j.1538-7305.1970.tb01811.x
[100] E. R. Berlekamp, ?Coding theory and the Mathieu groups,? Inform. and Contr.,18, No. 1, 40?64 (1971). · Zbl 0217.28602 · doi:10.1016/S0019-9958(71)90295-6
[101] E. R. Berlekamp, ?Long primitive binary BCH codes have distance d ? 2n lnR?1/logn,? IEEE Trans. Inform. Theory,18, No. 3, 451?426 (1972). · Zbl 0237.94002 · doi:10.1109/TIT.1972.1054814
[102] E. R. Berlekamp, ?Goppa codes,? IEEE Trans. Inform. Theory,19, No. 5, 590?592 (1973). · Zbl 0269.94003 · doi:10.1109/TIT.1973.1055088
[103] E. R. Berlekamp and J. Justesen, ?Some long cyclic linear binary codes are not so bad,? IEEE Trans. Inform. Theory,20, No. 3, 351?356 (1974). · Zbl 0309.94023 · doi:10.1109/TIT.1974.1055222
[104] E. R. Berlekamp, J. H. van Lint, and J. J. Seidel, ?A strongly regular graph derived from the perfect ternary Golay code,? Surv. Combin. Theory, Amsterdam e. a. (1973), pp. 25?30. · Zbl 0258.05129
[105] E. R. Berlekamp, F. J. MacWilliams, and N. J. A. Sloane, ?Gleason’s theorem on self-dual codes,? IEEE Trans. Inform. Theory,18, No. 3, 409?414 (1972). · Zbl 0239.94005 · doi:10.1109/TIT.1972.1054817
[106] E. R. Berlekamp and O. Moreno, ?Extended double-error-correcting binary Goppa codes are cyclic,? IEEE Trans. Inform. Theory,19, No. 6, 817?818 (1973). · Zbl 0276.94004 · doi:10.1109/TIT.1973.1055098
[107] E. R. Berlekamp, H. Rumsey, and G. Solomon, ?On the solution of algebraic equations over finite fields,? Inform. and Contr.,10, No. 6, 553?564 (1967). · Zbl 0166.04803 · doi:10.1016/S0019-9958(67)91016-9
[108] E. R. Berlekamp and N. J. A. Sloane, ?Restrictions on weight distribution of Reed-Muller codes,? Inform. and Contr.,14, No. 5, 442?456 (1969). · Zbl 0179.49101 · doi:10.1016/S0019-9958(69)90150-8
[109] E. R. Berlekamp and N. J. A. Sloane, ?Weight enumerator for second order Reed-Muller codes,? IEEE Trans. Inform. Theory,16, No. 6, 745?751 (1970). · Zbl 0205.20701 · doi:10.1109/TIT.1970.1054553
[110] E. R. Berlekamp and L. R. Welch, ?Weight distributions of the (32,6) Reed-Muller code,? IEEE Trans. Inform. Theory,18, No. 1, 203?207 (1972). · Zbl 0228.94003 · doi:10.1109/TIT.1972.1054732
[111] R. C. Bose, ?On some connections between the design of experiments and information theory,? Bull. Internat. Statist. Inst.,38, 257?271 (1961). · Zbl 0102.14503
[112] R. C. Bose and K. A. Bush, ?Orthogonal arrays of strength two and three,? Ann. Math. Stat.,23, 508?524 (1952). · Zbl 0048.00803 · doi:10.1214/aoms/1177729331
[113] R. C. Bose and D. K. Ray-Chaudhuri, ?On a class of error correcting binary codes,? Inform. and Contr.,3, No. 1, 68?79 (1960). · Zbl 0104.36402 · doi:10.1016/S0019-9958(60)90287-4
[114] R. C. Bose and D. K. Ray-Chaudhuri, ?Further results on error correcting binary group codes,? Inform. and Contr.,3, No. 3, 279?290 (1960). · Zbl 0104.36403 · doi:10.1016/S0019-9958(60)90870-6
[115] R. C. Bose and S. S. Shrinkhande, ?A note on a result in the theory of code construction,? Inform. and Contr.,2, No. 2, 183?194 (1959). · Zbl 0089.14904 · doi:10.1016/S0019-9958(59)90376-6
[116] J. Brillhart and J. L. Selfridge, ?Some factorizations of 2n\(\pm\)1 and related results,? Math. Computation,21, No. 97, 87?96 (1967). · Zbl 0146.04903
[117] J. Brillhart, J. L. Selfridge, and N. Zierler, ?On irreducible trinomials modulo 2. I,? Inform. and Contr.,13, 541?544 (1968); II, ibid,14, 566?569 (1969). · Zbl 0165.06503 · doi:10.1016/S0019-9958(68)90973-X
[118] M. Broué and H. Enguehard, ?Polynômes des poids de certains codes et fonctions theta de certains reseaux,? Ann. Sci. École Norm. Supér.,5, No. 1, 157?181 (1972). · Zbl 0254.94016 · doi:10.24033/asens.1223
[119] H. O. Burton and E. J. Weldon, Jr., ?Cyclic product codes,? IEEE Trans. Inform. Theory,11, No. 3, 433?439 (1965). · Zbl 0134.37207 · doi:10.1109/TIT.1965.1053802
[120] K. A. Bush, ?Orthogonal arrays of index unity,? Ann. Math. Stat.,23, 426?434 (1952). · Zbl 0047.01704 · doi:10.1214/aoms/1177729387
[121] A. G. Cerveira, ?On a class of wide-sense binary BCH codes whose minimum distance exceeds the BCH bound,? IEEE Trans. Inform. Theory,14, No. 5, 784?785 (1968). · Zbl 0165.22104 · doi:10.1109/TIT.1968.1054206
[122] C. L. Chen, ?Computer results on the minimum distance of some binary cyclic codes,? IEEE Trans. Inform. Theory,16, No. 3, 359?360 (1970). · doi:10.1109/TIT.1970.1054452
[123] C. L. Chen, ?On majority-logic decoding of finite geometry codes,? IEEE Trans. Inform. Theory,17, No. 3, 332?336 (1971). · Zbl 0222.94014 · doi:10.1109/TIT.1971.1054629
[124] C. L. Chen, ?The existence of arbitrarily long pseudo-cyclic codes that meet the Gilbert bound,? in: Proceedings of the Fifth Annual Princeton Conference on Information Science and Systems (1971), p. 242.
[125] C. L. Chen, ?Note on majority-logic decoding of finite geometry codes,? IEEE Trans. Inform. Theory,18, No. 4, 539?541 (1972). · Zbl 0241.94016 · doi:10.1109/TIT.1972.1054843
[126] C. L. Chen, W. W. Peterson, and E. J. Weldon, Jr., ?Some results on quasicyclic codes,? Inform. and Contr.,15, No. 5, 407?423 (1969). · Zbl 0185.47403 · doi:10.1016/S0019-9958(69)90497-5
[127] C. L. Chen and S. Lin, ?Further results on polynomial codes,? Inform. and Contr.,15, No. 1, 38?60 (1969). · Zbl 0188.52202 · doi:10.1016/S0019-9958(69)90611-1
[128] P. Delsarte, ?A geometric approach to a class of cyclic codes,? J. Combin. Theory,6, No. 4, 340?358 (1969). · Zbl 0172.43202 · doi:10.1016/S0021-9800(69)80030-X
[129] P. Delsarte, ?Automorphisms of Abellan codes,? Philips Res. Repts.,25, No. 5, 389?402 (1970).
[130] P. Delsarte, ?BCH bounds for a class of cyclic codes,? SIAM J. Appl. Math.,19, No. 2, 420?429 (1970). · Zbl 0207.19001 · doi:10.1137/0119040
[131] P. Delsarte, ?On cyclic codes that are invariant under the general linear group,? IEEE Trans. Inform. Theory,16, No. 6, 760?769 (1970). · Zbl 0209.22002 · doi:10.1109/TIT.1970.1054554
[132] P. Delsarte, ?Majority logic decodable codes derived from finite inversive planes,? Inform. and Contr.,18, No. 4, 319?325 (1971). · Zbl 0221.94017 · doi:10.1016/S0019-9958(71)90428-1
[133] P. Delsarte, ?Bounds for unrestricted codes by linear programming,? Philips Res. Repts.,27, 272?289 (1972). · Zbl 0348.94016
[134] P. Delsarte, ?Weights of linear codes and strongly regular normed spaces,? Discrete Math.,3, Nos. 1?3, 47?64 (1972). · Zbl 0245.94010 · doi:10.1016/0012-365X(72)90024-6
[135] P. Delsarte, ?Four fundamental parameters of a code and their combinatorial significance,? Inform. and Control,23, No. 5, 407?438 (1973). · Zbl 0274.94010 · doi:10.1016/S0019-9958(73)80007-5
[136] P. Delsarte, ?An algebraic approach to the association schemes of coding theory,? Philips Res. Repts. Suppl., No. 10 (1973). · Zbl 1075.05606
[137] P. Delsarte, ?The association schemes of coding theory,? Math. Center Tracts, No. 55, 139?157 (1974). · Zbl 0301.94008
[138] P. Delsarte and J. M. Goethals, Irreducible Binary Cyclic Codes of Even Dimension, Inst. Statist., Mimeo Ser. No. 600.27, University of North Carolina, Chapel Hill (1970). · Zbl 0212.23303
[139] P. Delsarte and J. M. Goethals, ?Unrestricted codes with the Golay parameters are unique,? Discrete Math.,12, No. 3, 211?224 (1975). · Zbl 0307.94013 · doi:10.1016/0012-365X(75)90047-3
[140] P. Delsarte, J. M. Goethals, and F. J. MacWilliams, ?On generalized Reed-Muller codes and their relatives,? Inform. and Contr.,16, No. 5, 403?442 (1970). · Zbl 0267.94014 · doi:10.1016/S0019-9958(70)90214-7
[141] P. Elias, ?Error-free coding,? IRE Trans. Inform. Theory,4, No. 1, 29?37 (1954). · doi:10.1109/TIT.1954.1057464
[142] W. Feit, ?A self-dual even (96, 48, 16) code,? IEEE Trans. Inform. Theory,20, No. 1, 136?138 (1974). · Zbl 0273.94015 · doi:10.1109/TIT.1974.1055153
[143] G. D. Forney, Jr., Concatenated Codes, MIT Press, Cambridge (1966).
[144] C. V. Freiman, ?Upper bounds for fixed-weight codes of specified minimum distance,? IEEE Trans. Inform. Theory,10, No. 3, 246?248 (1964). · Zbl 0122.15005 · doi:10.1109/TIT.1964.1053677
[145] R. G. Gallager, Low-Density Paritycheck Codes, MIT Press, Cambridge (1963). · Zbl 0156.40701
[146] S. I. Gel’fand, R. L. Dobrushin, and M. S. Pinsker, ?On the complexity of coding,? in: Second International Symposium on Information Theory at Tsakhkadsor in 1971, Budapest (1973), pp. 177?184.
[147] E. N. Gilbert, ?A comparison of signalling alphabets,? Bell System Techn. J.,31, 504?522 (1952). · doi:10.1002/j.1538-7305.1952.tb01393.x
[148] A. M. Gleason, ?Weight polynomials of self-dual codes and the MacWilliams identities,? in: Actes Congr. Int. Mathématiciens, Vol. 3, Paris (1971), pp. 211?215.
[149] J. M. Goethals, ?Analysis of weight distribution in binary cyclic codes,? IEEE Trans. Inform. Theory,12, No. 3, 401?402 (1966). · Zbl 0141.14203 · doi:10.1109/TIT.1966.1053888
[150] J. M. Goethals, ?Factorization of cyclic codes,? IEEE Trans. Inform. Theory,13, No. 2, 242?246 (1967). · Zbl 0163.14305 · doi:10.1109/TIT.1967.1054016
[151] J. M. Goethals, ?Cyclic error-locating codes,? Inform. and Contr.,10, No. 4, 378?385 (1967). · Zbl 0153.48604 · doi:10.1016/S0019-9958(67)90192-1
[152] J. M. Goethals, ?On the Golay perfect binary code,? J. Combin. Theory,A11, No. 2, 178?186 (1971). · Zbl 0174.50801 · doi:10.1016/0097-3165(71)90043-4
[153] J. M. Goethals, ?Some combinatorial aspects of coding theory,? in: Surv. Combin. Theory, Amsterdam e.a. (1973), pp. 189?208.
[154] J. M. Goethals, ?Two dual families of nonlinear binary codes,? Electronics Letters,10, No 23, 471?472 (1974). · doi:10.1049/el:19740375
[155] J. M. Goethals and P. Delsarte, ?On a class of majority-logic decodable cyclic codes,? IEEE Trans. Inform. Theory,14, No. 2, 182?188 (1968). · Zbl 0157.26002 · doi:10.1109/TIT.1968.1054126
[156] J. M. Goethals and S. L. Snover, ?Nearly perfect binary codes,? Discrete Math.,3, Nos. 1?3, 65?88 (1972). · Zbl 0248.94018 · doi:10.1016/0012-365X(72)90025-8
[157] M. E. Golay, ?Notes on digital coding,? Proc. IRE,37, 657 (1949).
[158] M. E. Golay, ?Binary coding,? Trans. IRE,PGIT-4, 23?28 (1954).
[159] M. E. Golay, ?Notes on the penny-weighting problem, lossless symbol coding with nonprimes,? IEEE Trans. Inform. Theory,4, No. 3, 103?109 (1958). · doi:10.1109/TIT.1958.1057456
[160] M. Goldberg, ?Augmentation techniques for a class of product codes,? IEEE Trans. Inform. Theory,19, No. 5, 566?672 (1973). · Zbl 0266.94008 · doi:10.1109/TIT.1973.1055084
[161] H. D. Goldman, M. Kliman, and H. Smola, ?The weight structure of some Bose-Chaudhuri codes,? IEEE Trans. Inform. Theory,14, No. 1, 167?169 (1968). · doi:10.1109/TIT.1968.1054078
[162] R. M. Goldstein and N. Zierler, ?On trinomial recurrences,? IEEE Trans. Inform. Theory,14, No. 1, 150?151 (1968). · doi:10.1109/TIT.1968.1054086
[163] S. W. Golomb and E. C. Posner, ?Rock domains, latin squares, affine planes, and error-distributing codes,? IEEE Trans. Inform. Theory,10, No. 3, 196?208 (1964). · Zbl 0124.11404 · doi:10.1109/TIT.1964.1053680
[164] D. C. Gorenstein, W. W. Peterson, and N. Zierler, ?Two-error correcting Bose-Chaudhuri codes are quasi-perfect,? Inform. and Contr.,3, 291?294 (1960). · Zbl 0098.32302 · doi:10.1016/S0019-9958(60)90877-9
[165] D. C. Gorenstein and N. Zierler, ?A class of error-correcting codes in pm symbols,? J. Soc. Indus. Appl. Math.,9, 207?214 (1961). · Zbl 0154.44103 · doi:10.1137/0109020
[166] R. L. Graham and F. J. MacWilliams, ?On the number of information symbols in difference-set cyclic codes,? Bell Syst. Techn. J.,45, No. 7, 1057?1070 (1966). · Zbl 0166.15402 · doi:10.1002/j.1538-7305.1966.tb01687.x
[167] B. R. Gulati and E. G. Kounias, ?On three level symmetrical factorial designs and ternary group codes,? Sankhya. Indian J. Statist.,A35, No. 3, 377?392 (1973). · Zbl 0282.05019
[168] N. Hamada, ?On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes,? Hiroshima Math. J.,3, No. 1, 153?226 (1973). · Zbl 0271.62104
[169] R. W. Hamming, ?Error-detecting and error-correcting codes,? Bell Syst. Techn. J.,29, No. 2, 147?160 (1950). · doi:10.1002/j.1538-7305.1950.tb00463.x
[170] C. R. P. Hartmann, ?On the weight structure of cyclic codes of composite length,? Proc. Fourth Haw. Int. Conf. Syst. Sci. (1971), pp. 117?119.
[171] C. R. P. Hartmann, ?A note on the minimum-distance structure of cyclic codes,? IEEE Trans. Inform. Theory,18, No. 3, 439?440 (1972). · Zbl 0229.94005 · doi:10.1109/TIT.1972.1054822
[172] C. R. P. Hartmann, Decoding beyond the BCH bound,? IEEE Trans. Inform. Theory,18, No. 3, 441?444 (1972). · Zbl 0239.94010 · doi:10.1109/TIT.1972.1054824
[173] C. R. P. Hartmann, ?Theorems on the minimum distance structure of binary cyclic codes,? Second International Symposium on Information Theory at Tsakhkadsor in 1971, Budapest (1973), pp. 185?190. · Zbl 0277.94008
[174] C. R. P. Hartmann, J. B. Ducey, and L. D. Rudolph, ?On the structure of generalized finite-geometry codes,? IEEE Trans. Inform. Theory,20, No. 2, 240?252 (1974). · Zbl 0312.94002 · doi:10.1109/TIT.1974.1055198
[175] C. R. P. Hartmann and K. K. Tzeng, ?A bound for cyclic codes of composite length,? IEEE Trans. Inform. Theory,18, No. 2, 307 (1972). · Zbl 0226.94005 · doi:10.1109/TIT.1972.1054783
[176] C. R. P. Hartmann and K. K. Tzeng, ?Generalization of the BCH bound,? Inform. and Contr.,20, 489?498 (1972). · Zbl 0241.94013 · doi:10.1016/S0019-9958(72)90887-X
[177] C. R. P. Hartmann and K. K. Tzeng, ?On some classes of cyclic codes of composite length,? IEEE Trans. Inform. Theory,19, No. 6, 820?825 (1973). · Zbl 0272.94007 · doi:10.1109/TIT.1973.1055090
[178] C. R. P. Hartmann and K. K. Tzeng, ?Decoding beyond the BCH bound using multiple sets of syndrome sequences,? IEEE Trans. Inform. Theory,20, No. 2, 292?295 (1974). · Zbl 0305.94017 · doi:10.1109/TIT.1974.1055178
[179] C. R. P. Hartmann, K. K. Tzeng, and R. T. Chien, ?Some results on the minimum distance structure of cyclic codes,? IEEE Trans. Inform. Theory,18, No. 3, 402?409 (1972). · Zbl 0241.94014 · doi:10.1109/TIT.1972.1054816
[180] H. J. Helgert, ?Srivastava codes,? IEEE Trans. Inform. Theory,18, No. 2, 292?297 (1972). · Zbl 0231.94003 · doi:10.1109/TIT.1972.1054760
[181] H. J. Helgert, ?Noncyclic generalizations of BCH and Srivastava codes,? Inform. and Contr.,21, No. 3, 280?290 (1972). · Zbl 0256.94013 · doi:10.1016/S0019-9958(72)80007-X
[182] H. J. Helgert and R. D. Stinaff, ?Minimum-distance bounds for binary linear codes,? IEEE Trans. Inform. Theory,19, No. 3, 344?356 (1973). · Zbl 0265.94007 · doi:10.1109/TIT.1973.1055009
[183] H. J. Helgert and R. D. Stinaff, ?Shortened BCH codes,? IEEE Trans. Inform. Theory,19, No. 6, 818?820 (1973). · Zbl 0273.94014 · doi:10.1109/TIT.1973.1055099
[184] A. Hocquenghem, ?Codes correcteurs d’erreurs,? Chiffres,2, 147?156 (1959). · Zbl 0090.34608
[185] C. W. Hoffner and S. M. Reddy, ?Circulant bases for cyclic codes,? IEEE Trans. Inform. Theory,16, 511?512 (1970). · Zbl 0264.94008 · doi:10.1109/TIT.1970.1054478
[186] S. M. Johnson, ?A new upper bound for error-correcting codes,? IRE Trans. Inform. Theory,8, No. 3, 203?207 (1962). · doi:10.1109/TIT.1962.1057714
[187] S. M. Johnson, ?Improved asymptotic bounds for error-correcting codes,? IEEE Trans. Inform. Theory,9, No. 3, 198?205 (1963). · Zbl 0282.94010 · doi:10.1109/TIT.1963.1057841
[188] S. M. Johnson, ?On upper bounds for unrestricted binary error-correcting codes,? IEEE Trans. Inform. Theory,17, No. 4, 466?478 (1971). · Zbl 0231.94008 · doi:10.1109/TIT.1971.1054656
[189] S. M. Johnson, ?Upper bounds for constant weight error-correcting codes,? Discrete Math.,3, Nos. 1?3, 109?124 (1972). · Zbl 0248.94023 · doi:10.1016/0012-365X(72)90027-1
[190] J. Justesen, ?A class of constructive, asymptotically good algebraic codes,? IEEE Trans. Inform. Theory,18, No. 5, 652?656 (1972). · Zbl 0256.94008 · doi:10.1109/TIT.1972.1054893
[191] M. Karlin, ?New binary coding results by circulants,? IEEE Trans. Inform. Theory,15, No. 1, 81?92 (1969). · Zbl 0167.18104 · doi:10.1109/TIT.1969.1054261
[192] M. Karlin and F. J. MacWilliams, ?On finding low weight vectors in quadratic residue codes for p=8m?1,? SIAM J. Appl. Math.,25, No. 1, 95?104 (1973). · Zbl 0239.94006 · doi:10.1137/0125013
[193] ?Weight distribution of BCH codes,? in: R. G. Bose and T. A. Dowling (editors), Proceedings of the Conference on Combinatory Mathematics and Its Applications (April 10?14, 1967), The University of North Carolina Press, Chapel Hill, NC (1968), Chap. 20, pp. 335?357.
[194] T. Kasami, ?Some lower bounds on the minimum weight of cyclic codes of composite length,? IEEE Trans. Inform. Theory,14, No. 6, 814?818 (1968). · Zbl 0165.53502 · doi:10.1109/TIT.1968.1054233
[195] T. Kasami, ?An upper bound on k/n for affine-invariant codes with fixed d/n,? IEEE Trans. Inform. Theory,15, No. 1, 174?176 (1969). · Zbl 0169.21604 · doi:10.1109/TIT.1969.1054254
[196] T. Kasami, ?Some results on the weight structure of Reed-Muller codes,? in: The Second International Symposium on Information Theory, September 2?8, 1971, Tsakhkadsor, ArmSSR, Abstracts of Papers, Moscow-Erevan (1971), pp. 351?353.
[197] T. Kasami, ?The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes,? Inform. and Contr.,18, No. 4, 369?394 (1971). · Zbl 0217.58802 · doi:10.1016/S0019-9958(71)90473-6
[198] T. Kasami, ?A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2,? IEEE Trans. Inform. Theory,20, No. 5, 679 (1974). · Zbl 0295.94025 · doi:10.1109/TIT.1974.1055262
[199] T. Kasami, ?Construction and decomposition of cyclic codes of composite length,? IEEE Trans. Inform. Theory,20, No. 5, 680?683 (1974). · Zbl 0295.94026 · doi:10.1109/TIT.1974.1055263
[200] T. Kasami and S. Lin, ?On majority-logic decoding for duals of primitive polynomial codes,? IEEE Trans. Inform. Theory,17, No. 3, 322?331 (1971). · Zbl 0221.94009 · doi:10.1109/TIT.1971.1054640
[201] T. Kasami and S. Lin, ?Some results on the minimum weight of primitive BCH codes,? IEEE Trans. Inform. Theory,18, No. 6, 824?825 (1972). · Zbl 0245.94009 · doi:10.1109/TIT.1972.1054903
[202] T. Kasami, S. Lin, and W. W. Peterson, ?Some results on weight distributions of BCH codes,? IEEE Trans. Inform. Theory,12, No. 2, 274 (1966).
[203] T. Kasami, S. Lin, and W. W. Peterson, ?Some results on cyclic codes which are invariant under the affine group and their applications,? Inform. and Contr.,11, Nos. 5?6, 475?496 [1967 (1968)]. · Zbl 0169.51101 · doi:10.1016/S0019-9958(67)90691-2
[204] T. Kasami, S. Lin, and W. W. Peterson, ?Linear codes which are invariant under the affine group and some results on minimum weights in BCH codes,? Electronics and Communications in Japan,50, No. 9, 100?106 (1967).
[205] T. Kasami, S. Lin, and W. W. Peterson, ?New generalizations of the Reed-Muller codes. Part I. Primitive codes,? IEEE Trans. Inform. Theory,14, No. 2, 189?199 (1968). · Zbl 0162.51301 · doi:10.1109/TIT.1968.1054127
[206] T. Kasami, S. Lin, and W. W. Peterson, ?Generalized Reed-Muller codes,? Electronics and Communications in Japan,51-C, No. 3, 96?104 (1968).
[207] T. Kasami, S. Lin, and W. W. Peterson, ?Polynomial codes,? IEEE Trans. Inform. Theory,14, No. 6, 807?814 (1968). · Zbl 0214.47104 · doi:10.1109/TIT.1968.1054226
[208] T. Kasami and N. Tokura, ?Some remarks on BCH bounds and minimum weights of binary primitive BCH codes,? IEEE Trans. Inform. Theory,15, No. 3, 408?413 (1969). · Zbl 0172.43301 · doi:10.1109/TIT.1969.1054304
[209] T. Kasami and N. Tokura, ?On the weight structure of Reed-Muller codes,? IEEE Trans. Inform. Theory,16, No. 6, 752?759 (1970). · Zbl 0205.20604 · doi:10.1109/TIT.1970.1054545
[210] T. Kasami, N. Tokura, and S. Azumi, ?Weight enumerator formulas of Reed-Muller codes for 2d? w<2.5d,? in: The Third International Symposium on Information Theory, Tallinn, USSR (June 18?23, (1973), PartII, pp. 217?219. · Zbl 0324.94003
[211] A. M. Kerdock, ?A class of low-rate nonlinear binary codes,? Inform. and Contr.,20, No. 2, 182?187 (1972). · Zbl 0271.94016 · doi:10.1016/S0019-9958(72)90376-2
[212] A. M. Kerdock, F. J. MacWilliams, and A. M. Odlyzko, ?A new theorem about the Mattson-Solomon polynomial and some applications,? IEEE Trans. Inform. Theory,20, No. 1, 85?89 (1974). · Zbl 0277.94007 · doi:10.1109/TIT.1974.1055168
[213] D. Knree and H. D. Goldman, ?Quasi-self-reciprocal polynomials and potentially large minimum distance BCH codes,? IEEE Trans. Inform. Theory,15, No. 1, 118?121 (1969). · Zbl 0167.18004 · doi:10.1109/TIT.1969.1054262
[214] R. P. Kurshan and N. J. A. Sloane, ?Coset analysis of Reed-Muller codes via translates of finite vector spaces,? Inform. and Contr.,20, No. 5, 410?414 (1972). · Zbl 0238.94005 · doi:10.1016/S0019-9958(72)90832-7
[215] J. Leech, ?Some sphere packings in higher space,? Can. J. Math.,16, No. 4, 657?682 (1964). · Zbl 0142.20201 · doi:10.4153/CJM-1964-065-1
[216] J. Leech, ?Notes on sphere packings,? Can. J. Math.,19, No. 2, 251?267 (1967). · Zbl 0162.25901 · doi:10.4153/CJM-1967-017-0
[217] J. Leech and N. J. A. Sloane, ?New sphere packings in dimensions 9?15,? Bull. Amer. Math. Soc.,76, No. 5, 1006?1010 (1970). · Zbl 0198.55103 · doi:10.1090/S0002-9904-1970-12533-2
[218] J. Leech and N. J. A. Sloane, ?Sphere packing and error-correcting codes,? Can. J. Math.,23, No. 4, 718?745 (1971). · Zbl 0207.52205 · doi:10.4153/CJM-1971-081-3
[219] A. Lempel, ?Analysis and synthesis of polynomials and sequences over GF(2),? IEEE Trans. Inform. Theory,17, No. 3, 297?303 (1971). · Zbl 0239.94004 · doi:10.1109/TIT.1971.1054628
[220] H. W. Lenstra, Jr., ?Two theorems on perfect codes,? Discrete Math.,3, Nos. 1?3, 125?132 (1972). · Zbl 0248.94017 · doi:10.1016/0012-365X(72)90028-3
[221] J. E. Levi, ?A weight distribution bound for linear codes,? IEEE Trans. Inform. Theory,14, No. 3, 487?490 (1968). · doi:10.1109/TIT.1968.1054146
[222] S. Lin, ?Some codes which are invariant under a transitive permutation and their connection with balanced incomplete group block design,? in: R. C. Bose and T. A. Dowling (editors), Proceedings of the Conference on Combinatorial Mathematics and Its Applications (April 10?14, 1967), The University of North Carolina Press, Chapel Hill, NC (1968), Chap. 24.
[223] S. Lin, ?Shortened finite geometry codes,? IEEE Trans. Inform. Theory,18, No. 5, 692?696 (1972). · Zbl 0242.94009 · doi:10.1109/TIT.1972.1054862
[224] S. Lin, ?On the number of information symbols in polynomial codes,? IEEE Trans. Inform. Theory,18, No. 6, 785?794 (1972). · Zbl 0249.94002 · doi:10.1109/TIT.1972.1054900
[225] S. Lin, ?Multifold Euclidean geometry codes,? IEEE Trans. Inform. Theory,19, No. 4, 537?548 (1973). · Zbl 0265.94008 · doi:10.1109/TIT.1973.1055019
[226] S. Lin and E. I. Weldon, Jr., ?Long BCH codes are bad,? Inform. and Contr.11, No. 4, 445?451 (1967). · Zbl 0155.27704 · doi:10.1016/S0019-9958(67)90660-2
[227] S. Lin and E. I. Weldon, Jr., ?Further results on cyclic product codes,? IEEE Trans. Inform. Theory,16, No. 4, 452?459 (1970). · Zbl 0205.20502 · doi:10.1109/TIT.1970.1054491
[228] B. Lindström, ?On group and nongroup perfect codes in q symbols,? Math. Scand.,25, 149?159 (1969). · Zbl 0205.46903 · doi:10.7146/math.scand.a-10952
[229] J. H. van Lint, ?On the nonexistence of perfect 2- and 3-Hamming-error-correcting codes over GF(q),? Inform. and Contr.,16, No. 4, 396?401 (1970). · Zbl 0205.47102 · doi:10.1016/S0019-9958(70)90213-5
[230] J. H. van Lint, ?On the nonexistence of perfect 5-, 6-, and 7-Hamming-error-correcting codes over GF(q),? Techn. Hogesch. Indhoven. Onderafdel., Wisk. Rept., No. 6, 1?5 (1970). · Zbl 0205.47102
[231] J. H. van Lint, ?Nonexistence theorems for perfect error-correcting codes,? in: Comput. Algebra and Number Theory (SIAM-AMS Proc., Vol. 4), Providence, R. I. (1971), pp. 89?95. · Zbl 0243.94007
[232] J. H. van Lint, ?Coding theory,? Lect. Notes Math.,201, VIII (1971). · Zbl 0224.94002
[233] J. H. van Lint, ?A new description of the Nadler code,? IEEE Trans. Inform. Theory,18, No. 6, 825?827 (1972). · Zbl 0244.94009 · doi:10.1109/TIT.1972.1054904
[234] J. H. van Lint, ?Recent results on perfect codes and related topics,? Math. Center Tracts, No. 55, 158?178 (1974). · Zbl 0298.94014
[235] J. H. van Lint, ?A theorem on equidistant codes,? Discrete Math.,6, No. 4, 353?358 (1973). · Zbl 0271.94007 · doi:10.1016/0012-365X(73)90066-6
[236] C. L. Liu, B. G. Ong, and G. R. Ruth, ?A construction scheme for linear and nonlinear codes,? Discrete Math.,4, No. 2, 171?184 (1973). · Zbl 0256.94011 · doi:10.1016/0012-365X(73)90080-0
[237] S. P. Lloyd, ?Binary block coding,? Bell Syst. Techn. J.,36, No. 2, 517?535 (1957). · doi:10.1002/j.1538-7305.1957.tb02410.x
[238] V. Lum, ?Comments on ?The weight structure of some Bose-Chaudhuri codes?,? IEEE Trans. Inform. Theory,15, No. 5, 618?619 (1969). · doi:10.1109/TIT.1969.1054340
[239] V. Lum and R. T. Chien, ?On the minimum distance of Bose-Chaudhuri-Hocquenghem codes,? SIAM,16, 1325?1337 (1968). · Zbl 0181.22502
[240] F. J. MacWilliams, ?A theorem on the distribution of weights in a systematic code,? Bell Syst. Techn. J.,42, No. 1, 79?94 (1963). · doi:10.1002/j.1538-7305.1963.tb04003.x
[241] F. J. MacWilliams, ?The structure and properties of binary cyclic alphabets,? Bell Syst. Techn. J.,44, No. 2, 303?332 (1965). · Zbl 0132.39902 · doi:10.1002/j.1538-7305.1965.tb01664.x
[242] F. J. MacWilliams, ?Codes and ideals in group algebras,? in: R. C. Bose and T. A. Dowling (editors), Proceedings of the Conference on Combinatorial Mathematics and Its Applications (April 10?14, 1967), The University of North Carolina Press, Chapel Hill, NC (1968), Chap. 18. · Zbl 0301.94009
[243] F. J. MacWilliams, ?Binary codes which are ideals in the group algebra of an Abelian group,? Bell Syst. Techn. J.,49, No. 6, 987?1011 (1970). · Zbl 0205.20501 · doi:10.1002/j.1538-7305.1970.tb01812.x
[244] F. J. MacWilliams, ?On binary cyclic codes which are also cyclic codes over GF(2s),? SIAM J. Appl. Math.,19, No. 1, 75?95 (1970). · Zbl 0205.47001 · doi:10.1137/0119007
[245] F. J. MacWilliams, ?Cyclotomic numbers, coding theory and orthogonal polynomials,? Discrete Math.,3, Nos. 1?3, 133?151 (1972). · Zbl 0248.94010 · doi:10.1016/0012-365X(72)90029-5
[246] F. J. MacWilliams, ?Orthonal circulant matrices over finite fields,? J. Combin. Theory,A10, No. 1, 1?17 (1971). · Zbl 0219.15005 · doi:10.1016/0097-3165(71)90062-8
[247] F. J. MacWilliams, C. L. Mallows, and N. J. A. Sloane, ?Generalizations of Gleason’s theorem on weight enumerators of self-dual codes,? IEEE Trans. Inform. Theory,18, No. 6. 794?805 (1972). · Zbl 0248.94013 · doi:10.1109/TIT.1972.1054898
[248] F. J. MacWilliams and H. B. Mann, ?On the p-rank of the design matrix of difference set,? Inform. and Contr.,12, Nos. 5?6, 474?488 (1968). · Zbl 0169.32104 · doi:10.1016/S0019-9958(68)90534-2
[249] F. J. MacWilliams, N. J. A. Sloane, and J. M. Goethals, ?The MacWilliams identities for nonlinear codes,? Bell Syst. Techn. J.,51, No. 4, 803?819 (1972). · Zbl 0301.94010 · doi:10.1002/j.1538-7305.1972.tb01947.x
[250] F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson, ?Good self-dual codes exist,? Discrete Math.,3, Nos. 1?3, 153?162 (1972). · Zbl 0248.94011 · doi:10.1016/0012-365X(72)90030-1
[251] F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson, ?On the existence of a projective plane of order 10,? J. Combin. Theory,14(A), No. 1, 66?78 (1973). · Zbl 0251.05020 · doi:10.1016/0097-3165(73)90064-2
[252] J. E. MacDonald, ?Design methods for maximum minimum-distance error-correcting codes,? IBM J. Res. Develop.,4, No. 1, 43?57 (1960). · Zbl 0092.34004 · doi:10.1147/rd.41.0043
[253] C. L. Mallows and N. J. A. Sloane, ?The split weight enumerator of a code,? in: The Third International Symposium on Information Theory, Tallin, USSR (June 18?23, 1973), Part II, pp. 220?224. · Zbl 0268.20033
[254] C. L. Mallows and N. J. A. Sloane, ?An upper bound for self-dual codes,? Inform. and Contr.,22, No. 2, 188?200 (1973). · Zbl 0254.94011 · doi:10.1016/S0019-9958(73)90273-8
[255] C. L. Mallows and N. J. A. Sloane, ?Weight enumerators of self-orthogonal codes,? Discrete Math.,9, No. 4, 391?400 (1974). · Zbl 0289.94007 · doi:10.1016/0012-365X(74)90085-5
[256] C. Maneri and R. Silverman, ?A vector-space packing problem,? J. Algebra,4, No. 3, 321?330 (1966). · Zbl 0151.01602 · doi:10.1016/0021-8693(66)90024-X
[257] H. B. Mann, ?On the number of information symbols in Bose-Chaudhuri codes,? Inform. and Contr.,5, No. 2, 153?162 (1962). · Zbl 0113.12102 · doi:10.1016/S0019-9958(62)90298-X
[258] H. B. Mann (editor), Error Correcting Codes, Wiley, New York (1968). · Zbl 0162.51204
[259] J. L. Massey, Threshold Decoding, MIT Press, Cambridge (1963).
[260] J. L. Massey, ?Reversible codes,? Inform. and Contr.,7, 369?380 (1964). · Zbl 0137.37704 · doi:10.1016/S0019-9958(64)90438-3
[261] J. L. Massey, ?On the fractional weight of distinct binary n-tuples,? IEEE Trans. Inform. Theory,20, No. 1, 131 (1974). · Zbl 0274.94018 · doi:10.1109/TIT.1974.1055150
[262] J. L. Massey, D. J. Costello, Jr., and J. Justesen, ?Polynomial weights and code constructions,? IEEE Trans. Inform. Theory,19, No. 1, 101?110 (1973). · Zbl 0248.94009 · doi:10.1109/TIT.1973.1054936
[263] H. F. Mattson and G. Solomon, ?A new treatment of Bose-Chaudhuri codes,? J. Soc. Indus. Appl. Math.,9, No. 4, 654?669 (1961) · Zbl 0137.13604 · doi:10.1137/0109055
[264] R. J. McEliece, ?On the symmetry of good nonlinear codes,? IEEE Trans. Inform. Theory,16, No. 5, 609?611 (1970). · Zbl 0199.54201 · doi:10.1109/TIT.1970.1054508
[265] R. J. McEliece, ?On periodic sequences from GF(q),? J. Combin. Theory,A10, No. 1, 80?91 (1971). · Zbl 0219.12020 · doi:10.1016/0097-3165(71)90066-5
[266] R. J. McEliece and H. Rumsey, Jr., ?Euler products, cyclotomy and coding,? J. Number Theory,4, No. 3, 302?311 (1972). · Zbl 0235.12014 · doi:10.1016/0022-314X(72)90057-1
[267] D. E. Muller, ?Application of Boolean algebra to switching circuit design and to error detection,? IRE Trans. Electr. Comput.,3, No. 1, 6?12 (1954).
[268] M. Nadler, ?A 32-point n=12, d=5 code,? IEEE Trans. Inform. Theory,8, No. 1, 58 (1962). · Zbl 0108.13805 · doi:10.1109/TIT.1962.1057670
[269] P. G. Neumann, ?A note on cyclic permutation error-correcting codes,? Inform. and Contr.,5, No. 1, 72?86 (1962). · Zbl 0103.35706 · doi:10.1016/S0019-9958(62)90233-4
[270] A. W. Nordstrom and J. P. Robinson, ?An optimum nonlinear code,? Inform. and Contr.,11, Nos. 5?6, 613?616 [1967 (1968)]. · Zbl 0157.26003 · doi:10.1016/S0019-9958(67)90835-2
[271] S. Sh. Oganesyan, V. G. Yagdzyan, and V. I. Tairyan, ?On a class of optimal cyclic codes,? in: The Second International Symposium on Information Theory, September 2?8, 1971, at Tsakhkadsor, ArmSSR. Budapest (1973), pp. 219?224. · Zbl 0273.94017
[272] A. M. Patel, ?Maximal group codes with specified minimum distance,? IBM J. Res. Develop.,14, No. 4, 434?443 (1970). · Zbl 0196.22501 · doi:10.1147/rd.144.0434
[273] W. W. Peterson, Error Correcting Codes, MIT Press, Cambridge (1961). · Zbl 0105.32802
[274] W. W. Peterson, ?On the weight structure and symmetry of BCH codes,? J. IECE Japan,50, 1183?1190 (1967).
[275] W. W. Peterson, ?Some new results on finite fields and their applications to the theory of BCH codes,? in: R. C. Bose and T. A. Dowling (editors), Proceedings of the Conference on Combinatorial Mathematics and Its Applications (April 10?14, 1967), The University of North Carolina Press, Chapel Hill, NC (1968), Chap. 19.
[276] W. W. Peterson and E. J. Weldon, Jr., Error Correcting Codes (2nd edition), MIT Press, Cambridge (1972). · Zbl 0251.94007
[277] J. N. Pierce, ?Limit distribution of the minimum distance of random linear codes,? IEEE Trans. Inform. Theory,13, No. 4, 595?599 (1967). · Zbl 0178.22404 · doi:10.1109/TIT.1967.1054053
[278] V. Pless, ?Power moment identities on weight distributions in error-correcting codes,? Inform. and Contr.,6, No. 2, 147?152 (1963). · Zbl 0149.37905 · doi:10.1016/S0019-9958(63)90189-X
[279] V. Pless, ?On the uniqueness of the Golay codes,? J. Combin. Theory,5, 215?228 (1968). · Zbl 0172.43105 · doi:10.1016/S0021-9800(68)80067-5
[280] V. Pless, ?On a new family of symmetry codes and related new five-designs,? Bull. Amer. Math. Soc.,75, No. 6, 1339?1342 (1969). · Zbl 0188.04005 · doi:10.1090/S0002-9904-1969-12418-3
[281] V. Pless, ?A classification of self-orthogonal codes over GF(2),? Discrete Math.,3, Nos. 1?3, 209?246 (1972). · Zbl 0256.94015 · doi:10.1016/0012-365X(72)90034-9
[282] V. Pless, ?Symmetry codes over GF(3) and new five-designs,? J. Combin. Theory,12(A), No. 1, 119?142 (1972). · Zbl 0225.94005 · doi:10.1016/0097-3165(72)90088-X
[283] V. Pless, ?Symmetry codes and their invariant subcodes,? Proj. MAC Techn. Memo., No. 44, 1?13 (1974).
[284] V. Pless and J. N. Pierce, ?Self-dual codes over GF(q) satisfy a modified Varshamov-Gilbert bound,? Inform. and Contr.,23, No. 1, 35?40 (1973). · Zbl 0274.94012 · doi:10.1016/S0019-9958(73)90862-0
[285] V. Pless and N. J. A. Sloane, ?Binary self-dual codes of length 24,? Bull. Amer. Math. Soc.,80, No. 6, 1173?1178 (1974). · Zbl 0295.94018 · doi:10.1090/S0002-9904-1974-13662-1
[286] M. Plotkin, ?Binary codes with specified minimum distance,? IRE Trans. Inform. Theory,6, No. 4, 445?450 (1960). · doi:10.1109/TIT.1960.1057584
[287] F. P. Preparata, ?Weight and distance structure of Nordstrom-Robinson quadratic code,? Inform. and Contr.,12, Nos. 5?6, 466?473 (1968). · Zbl 0169.51003 · doi:10.1016/S0019-9958(68)90515-9
[288] F. P. Preparata, ?A class of optimum nonlinear double-error-correcting codes,? Inform. and Contr.,13, No. 4, 378?400 (1968). · Zbl 0167.47702 · doi:10.1016/S0019-9958(68)90874-7
[289] F. P. Preparata, ?A new look at the Golay (23, 12) code,? IEEE Trans. Inform. Theory,16, No. 4, 510?511 (1970). · Zbl 0206.21101 · doi:10.1109/TIT.1970.1054480
[290] V. V. Rao and S. M. Reddy, ?A (48, 31, 8) linear code,? IEEE Trans. Inform. Theory,19, No. 5, 709?711 (1973). · Zbl 0266.94013 · doi:10.1109/TIT.1973.1055058
[291] I. S. Reed, ?A class of multiple-error-correcting codes and the decoding scheme,? IRE Trans. Inform. Theory,4, No. 1, 38?49 (1954). · doi:10.1109/TIT.1954.1057465
[292] I. S. Reed and G. Solomon, ?Polynomial codes over certain finite fields,? J. Soc. Industr. and Appl. Math.,8, No. 2, 300?304 (1960). · Zbl 0099.34403 · doi:10.1137/0108018
[293] L. D. Rudolph, ?A class of majority logic decodable codes,? IEEE Trans. Inform. Theory,13, No. 2, 305?307 (1967). · Zbl 0152.15410 · doi:10.1109/TIT.1967.1053994
[294] J. Schonheim, ?On linear and nonlinear single-error correcting q-nary perfect codes,? Inform. and Contr.,12, No. 1, 23?26 (1968). · Zbl 0162.51203 · doi:10.1016/S0019-9958(68)90167-8
[295] G. Seguin, ?On the weight distribution of cyclic codes,? IEEE Trans. Inform. Theory,16, No. 3, 358 (1970). · Zbl 0197.45404 · doi:10.1109/TIT.1970.1054451
[296] H. S. Shapiro and D. L. Slotnick, ?On the mathematical theory of error-correcting codes,? IBM J. Res. Develop.,3, No. 1, 25?34 (1959). · Zbl 0109.10706 · doi:10.1147/rd.31.0025
[297] E. P. Shaughnessy, ?Codes with simple automorphism groups,? Archiv Math.,22, No. 5, 459?466 (1971). · Zbl 0241.20028 · doi:10.1007/BF01222605
[298] S. G. S. Shiva, ?Certain group codes,? Proc. IEEE,55, 2162?2163 (1967). · doi:10.1109/PROC.1967.6097
[299] R. A. Silverman, ?A metrization for power-sets with applications to combinatorial analysis,? Canad. J. Math.,12, No. 1, 156?176 (1960). · Zbl 0092.01201 · doi:10.4153/CJM-1960-014-0
[300] R. C. Singleton, ?Maximum distance q-nary codes,? IEEE Trans. Inform. Theory,10, No. 2, 116?118 (1964). · Zbl 0124.11505 · doi:10.1109/TIT.1964.1053661
[301] D. Slepian, ?A class of binary signalling alphabets,? Bell Syst. Techn. J.,35, No. 1, 203?234 (1956). · doi:10.1002/j.1538-7305.1956.tb02379.x
[302] D. Slepian, ?Some further theory of group codes,? Bell Syst. Techn. J.,9, 1219?1252 (1960). · doi:10.1002/j.1538-7305.1960.tb03958.x
[303] N. J. A. Sloane, ?Sphere packings constructed from BCH and Justesen codes,? Mathematika (Gr. Brit.),19, No. 2, 183?190 (1972). · Zbl 0252.10026 · doi:10.1112/S0025579300005635
[304] N. J. A. Sloane, ?A survey of constructive coding theory, and a table of binary codes of highest known rate,? Discrete Math.,3, Nos. 1?3, 265?294 (1972). · Zbl 0244.94004 · doi:10.1016/0012-365X(72)90036-2
[305] N. J. A. Sloane, ?Is there a (72, 36) d=16 self-dual code?? IEEE Trans. Inform. Theory,19, No. 2, 251 (1973). · Zbl 0248.94012 · doi:10.1109/TIT.1973.1054975
[306] N. J. A. Sloane, ?Weight enumerators of codes,? Math. Center Tracts, No. 55, 111?138 (1974). · Zbl 0298.94007
[307] N. J. A. Sloane, S. M. Reddy, and C.-L. Chen. ?New binary codes,? IEEE Trans. Inform. Theory,18, No. 4, 503?510 (1972). · Zbl 0243.94006 · doi:10.1109/TIT.1972.1054833
[308] N. J. A. Sloane and J. J. Seidel, ?A new family of nonlinear codes obtained from conference matrices,? Ann. New York Academy of Sciences,175, No. 1, 363?365 (1970). · Zbl 0236.94010 · doi:10.1111/j.1749-6632.1970.tb56492.x
[309] N. J. A. Sloane and D. S. Whitehead, ?New family of single-error correcting codes,? IEEE Trans. Inform. Theory,16, No. 6, 717?719 (1970). · Zbl 0206.21201 · doi:10.1109/TIT.1970.1054540
[310] K. J. C. Smith, ?On the p-rank of the incidence matrix of points and hyperplanes in a finite projective geometry,? J. Combin. Theory,7, No. 2, 122?129 (1969). · Zbl 0185.24305 · doi:10.1016/S0021-9800(69)80046-3
[311] G. Solomon, ?A weight formula for group codes,? IEEE Trans. Inform. Theory,8, No. 5, 1?4 (1962). · Zbl 0115.35605 · doi:10.1109/TIT.1962.1057776
[312] G. Solomon and R. McEliece, ?Weights of cyclic codes,? J. Combin. Theory,1, No. 4, 459?475 (1966). · Zbl 0173.21204 · doi:10.1016/S0021-9800(66)80017-0
[313] G. Solomon and J. J. Stiffler, ?Algebraically punctured cyclic codes,? Inform. and Contr.,8 No. 2, 170?179 (1965). · Zbl 0149.15903 · doi:10.1016/S0019-9958(65)90080-X
[314] M. Sugino, Y. Ienaga, N. Tokura, and T. Kasami, ?Weight distribution of (128, 64) Reed-Muller code,? IEEE Trans. Inform. Theory,17, No. 5, 627?628 (1971). · doi:10.1109/TIT.1971.1054678
[315] Y. Sugiyama, M. Kasahara, Sh. Hirasawa, and T. Namekawa, ?A modification of the constructive asymptotically good codes of Justesen for low rates,? Inform. and Contr.,25, No. 4, 341?350 (1974). · Zbl 0284.94002 · doi:10.1016/S0019-9958(74)91016-X
[316] R. G. Swan, ?Factorization of polynomials over finite fields,? Pacific J. Math.,12, No. 3, 1099?1106 (1962). · Zbl 0113.01701 · doi:10.2140/pjm.1962.12.1099
[317] S. E. Tavares, P. E. Allard, and S. G. C. Shiva, ?On the decomposition of cyclic codes into cyclic classes,? Inform. and Contr.,18, 342?354 (1971). · Zbl 0224.94010 · doi:10.1016/S0019-9958(71)90446-3
[318] A. Tietäväinen, ?On the nonexistence of perfect 4-Hamming-error-correcting codes,? Suomalais. Tiedeakat. Toimituks., Ser. AI, No. 485, 1?6 (1970). · Zbl 0209.22003
[319] A. Tietäväinen, ?On the nonexistence of perfect codes over finite fields,? SIAM J. Appl. Math.,24, No. 1, 88?96 (1973). · Zbl 0233.94004 · doi:10.1137/0124010
[320] A. Tietäväinen, ?A short proof for the nonexistence of unknown perfect codes over GF(q), q>2,? Suomalais. Tiedeakat. Toimituks., Ser. AI, No. 580, 1?6 (1974). · Zbl 0289.94004
[321] A. Tietäväinen and A. Perko, ?There are no unknown perfect binary codes,? Turun Yliopiston Julk., Ser. AI, No. 148, 1?10 (1971).
[322] R. L. Townsend and E. J. Weldon, Jr., ?SeIf-orthogonal quasi-cyclic codes,? IEEE Trans. Inform. Theory,13, No. 2, 183?195 (1967). · Zbl 0148.40305 · doi:10.1109/TIT.1967.1053974
[323] K. K. Tzeng, ?Reversible residue codes,? in: Proc. UMR-Mervin J. Kelly Communs. Conf., Rolla Mo., 1970, New York, N. Y. (1970), pp. (5-3)/1?(5-3)/5.
[324] T. J. Wagner, ?A search technique for quasi-perfect codes,? Inform. and Contr.,9, No. 1, 94?99 (1966). · Zbl 0269.94006 · doi:10.1016/S0019-9958(66)90128-8
[325] L. R. Welch, R. J. McEliece, and H. Rumsey, Jr., ?A low-rate improvement on the Elias bound,? IEEE Trans. Inform. Theory,20, No. 5, 676?678 (1974). · Zbl 0298.94008 · doi:10.1109/TIT.1974.1055279
[326] E. J. Weldon, Jr., ?Difference-set cyclic codes,? Bell Syst. Techn. J.,25, No. 7, 1045?1055 (1966).
[327] E. J. Weldon, Jr., ?New generalizations of the Reed-Muller codes, Part II. Nonprimitive codes,? IEEE Trans. Inform. Theory,14, No. 2, 199?205 (1968). · Zbl 0162.51302 · doi:10.1109/TIT.1968.1054128
[328] E. J. Weldon, Jr., ?Euclidean geometry cyclic codes,? in: R. C. Bose and T. A. Dowling (editors), Proceedings of the Conference on Combinatorial Mathematics and Its Applications (April 10?14, 1967), The University of North Carolina Press, Chapel Hill, NC (1968), Chap. 23.
[329] E. J. Weldon, Jr., ?Long quasi-cyclic codes are good,? IEEE Trans. Inform. Theory,16, No. 1, 130 (1970).
[330] E. J. Weldon, Jr., ?Justesen’s construction-a low rate case,? IEEE Trans. Inform. Theory,19, No. 5, 711?713 (1973). · Zbl 0274.94011 · doi:10.1109/TIT.1973.1055068
[331] J. K. Wolf, ?On codes derivable from the tensor product of check matrices,? IEEE Trans. Inform. Theory,11, 281?284 (1965). · Zbl 0134.15301 · doi:10.1109/TIT.1965.1053771
[332] J. K. Wolf, ?On an extended class of error-locating codes,? Inform. and Contr.,8, No. 2, 163?169 (1965). · Zbl 0127.10802 · doi:10.1016/S0019-9958(65)90066-5
[333] J. K. Wolf, ?Adding two information symbols to certain nonbinary BCH and some applications,? Bell Syst. Techn. J.,48, No. 7, 2405?2424 (1969). · Zbl 0179.49002 · doi:10.1002/j.1538-7305.1969.tb01179.x
[334] J. K. Wolf, ?Nonbinary random error correcting codes,? IEEE Trans. Inform. Theory,16, No. 2, 236?237 (1970). · Zbl 0192.56403 · doi:10.1109/TIT.1970.1054439
[335] G. V. Zaitsev, V. A. Zinov’ev, and N. V. Semakov, ?Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes,? in: The Second International Symposium on Information Theory, September 2?8, 1971, at Tsakhkadsor, ArmSSR, Budapest (1973), pp. 257?263.
[336] N. Zierler, ?Linear recurring sequences,? J. Soc. Ind. Appl. Math.,7, No. 1, 31?48 (1959). · Zbl 0096.33804 · doi:10.1137/0107003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.