×

zbMATH — the first resource for mathematics

Lie groups and homogeneous spaces. (English) Zbl 0338.22001

MSC:
22-02 Research exposition (monographs, survey articles) pertaining to topological groups
22Exx Lie groups
Software:
liealgebra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. N. Abdullin, ?Symmetric Riemann spaces V4,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 2, 3?12 (1971).
[2] N. N. Adamushko, ?Geometry of simple and quasisimple Lie groups of class G2,? Uch. Zap. Mosk. Obl. Ped. Inst.,253, 23?42 (1969).
[3] M. A. Akivis, ?On canonic expansions of the equations of a local analytic quasigroup,? Dokl. Akad. Nauk SSSR,188, No. 5, 967?970 (1969).
[4] D. V. Alekseevskii, ?Compact quaternion spaces,? Funktsional’. Analiz i Ego Prilozhen.,2, No. 2, 11?20 (1968).
[5] D. V. Alekseevskii, ?Quaternion Riemann spaces with a transitive reductive or solvable motion group,? Funktsional’. Analiz i Ego Prilozhen.,4, No. 4, 68?69 (1970). · Zbl 0221.32008 · doi:10.1007/BF01075621
[6] D. V. Alekseevskii, ?Conjugacy of polar expansions of Lie groups,? Matem. Sb.,84, No. 1, 14?26 (1971). · Zbl 0239.22013
[7] S. J. Ali?auskas, V. V. Vanagas, and A. P. Jucys, ?Connection between isoscalar factors and transformation matrices of unitary group representations,? Dokl. Akad. Nauk SSSR,197, No. 4, 804?805 (1971).
[8] S. J. Ali?auskas and A. P. Jucys, ?On the Clebsch-Gordan coefficients of symmetric representations of groups SUn,? Dokl. Akad. Nauk SSSR,177, No. 1, 61?64 (1967).
[9] E. M. Andreev, ?On convex polytopes in Lobachevskii spaces,? Matem. Sb.,81, No. 3, 445?478 (1970).
[10] E. M. Andreev, ?On convex polytopes of finite volume in a Lobachevskii space,? Matem. Sb.,83, No. 2, 256?260 (1970).
[11] E. M. Andreev, É. B. Vinberg, and A. G. Élashvili, ?Orbits of large dimension of semisimple linear Lie groups,? Funktsional’. Analiz i Ego Prilozhen,1, No. 4, 3?7 (1967).
[12] E. M. Andreev and V. L. Popov, ?On the stationary semigroups of points in general position in the representation space of a semisimple Lie group,? Funktsional’. Analiz i Ego Prilozhen.,5, No. 4, 1?8 (1971). · Zbl 0246.17008 · doi:10.1007/BF01075841
[13] L. P. Andreeva and L. V. Shestyreva, ?Limit symplectic spaces,? Uch. Zap. Kolomensk. Ped. Inst.,8, 23?44 [1964(1965)].
[14] S. Araki, ?Root systems and local classification of irreducible symmetric spaces,? Matematika (Periodic Collection of Translations of Foreign Articles),10, No. 1, 90?126 (1966).
[15] V. I. Arnol’d ?One-dimensional cohomologies of the Lie algebra of divergence-free vector fields and on the rotation numbers of dynamic systems,? Funktsional’. Analiz i Ego Prilozhen.,3, No. 4, 77?78 (1969). · Zbl 0179.17801 · doi:10.1007/BF01078280
[16] A. G. Aslanyan and V. I. Burenkov, ?Derivation of the Campbell-Baker formula by a differentiation with respect to a parameter,? Tr. Mosk. Inst. Radiotekhn., Élektron. i Avtomatiki, No. 52, 8?11 (1971).
[17] V. V. Astrakhantsev, ?Pseudo-Riemann symmetric spaces with a commutative homology group,? Matem. Sb.,90, No. 2, 288?305 (1973).
[18] D. N. Akhiezer, ?On the cohomologies of compact complex homogeneous spaces,? Matem. Sb.,84, No. 2, 290?300 (1971).
[19] D. N. Akhiezer, ?On the cohomologies of compact complex homogeneous spaces. II,? Matem. Sb.,87, No. 4, 587?593 (1972).
[20] I. A. Baltag, ?Infinite series of Fedorov groups on a pseudo-Euclidean plane,? in: Investigations on General Algebra, No. I [in Russian], Kishinev (1968), pp. 3?11.
[21] I. A. Baltag, ?Two-dimensional pseudo-Euclidean Fedorov groups containing singular transformations,? in: Investigations on General Algebra, No. I [in Russian], Kishinev (1968), pp. 12?22.
[22] I. V. Bel’ko, ?Subgroups of the Lorentz-Poincaré group,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 5?13 (1971).
[23] I. V. Bel’ko and A. S. Fedenko, ?Subgroups of Lorentz groups,? Dokl. Akad. Nauk BSSR,14, No. 5, 393?395 (1970).
[24] F. A. Berezin and F. I. Karpelevich, ?Lie algebras with a positive structure,? Matem. Sb.,77, No. 2, 201?221 (1968).
[25] F. A. Berezin and G. I. Kats, ?Lie groups with commuting and anticommuting parameters,? Matem. Sb.,82, No. 3, 343?359 (1970).
[26] I. N. Bernshtein, I. M. Gel’fand, and S. I. Gel’fand, ?Lattice of representations generated by vectors of highest weight,? Funktsional’. Analiz i Ego Prilozhen.,5, No. 1, 1?9 (1971). · Zbl 0246.17008 · doi:10.1007/BF01075841
[27] I. N. Bernshtein and B. I. Rozenfel’d, ?On the characteristic classes of foliations,? Funktsional’. Analiz i Ego Prilozhen.,6, No. 1, 68?69 (1972).
[28] M. Ya. Blinkin, ?On the indecomposability of Borel manifolds,? Matem. Sb.,88, No. 3, 442?446 (1972).
[29] A. Borel, ?Fundamental sets of arithmetic groups,? Matematika (Periodic Collection of Translations of Foreign Articles),9, No. 1, 127?139 (1965).
[30] A. Borel, ?Fundamental sets of arithmetic groups and automorphic forms,? Matematika (Periodic Collection of Translations of Foreign Articles),12, No. 4, 80?103 (1968).
[31] A. Borel, ?Fundamental sets of arithmetic groups and automorphic forms,? Matematika (Periodic Collection of Translations of Foreign Articles),12, No. 5, 34?90 (1968).
[32] A. Borel, ?Fundamental sets of arithmetic groups and automorphic forms,? Matematika (Periodic Collection of Translations of Foreign Articles),12, No. 6, 3?30 (1968).
[33] M. V. Vasil’eva, ?Higher subgroups of infinite Lie-Cartan groups,? Tr. Geometr. Seminara, Inst. Nauchn. Inform. Akad. Nauk SSSR,2, 81?93 (1969).
[34] B. Yu. Veisfeiler, ?On one class of unipotent subgroups of semisimple algebraic groups,? Uspekhi Matem. Nauk,21, No. 2, 222?223 (1966).
[35] B. Yu. Veisfeiler, ?Infinite-dimensional filtered Lie algebras and their connection with graded Lie algebras,? Funktsional’. Analiz i Ego Prilozhen.,2, No. 1, 94?95 (1968). · Zbl 0179.18501 · doi:10.1007/BF01075366
[36] É. B. Vinberg, ?Structure of the automorphism group of a homogeneous convex cone,? Tr. Mosk. Matem. Obshch.,13, 56?83 (1965).
[37] É. B. Vinberg, ?Discrete groups, generated by reflections, in Lobachevskii spaces,? Matem. Sb.,72, No. 3, 471?488 (1967).
[38] É. B. Vinberg, ?Correction to the article ?Discrete groups, generated by reflections, in Lobachevskii spaces?,? Matem. Sb.,73, No. 2, 308 (1967).
[39] É. B. Vinberg, ?Invariant norms in compact Lie algebras,? Funktsional’. Analiz i Ego Prilozhen.,2, No. 2, 89?90 (1968).
[40] É. B. Vinberg, ?Some examples of crystallographic groups in Lobachevskii spaces,? Matem. Sb.,78, No. 4, 633?639 (1969).
[41] É. B. Vinberg, ?Geometric representations of Coxeter groups,? Uspekhi Matem. Nauk,25, No. 2, 267?268 (1970).
[42] É. B. Vinberg, ?Discrete linear groups generated by reflections,? Izv. Akad. Nauk SSSR, Ser. Matem.,35, No. 5, 1072?1112 (1971).
[43] É. B. Vinberg, ?On the unit groups of certain quadratic forms,? Matem. Sb.,87, No. 1, 18?36 (1972).
[44] É. B. Vinberg and S. G. Gindikin, ?Kähler manifolds admitting of a transitive solvable automorphism group,? Matem. Sb.,74, No. 3, 357?377 (1967). · Zbl 0172.37803
[45] É. B. Vinberg and V. G. Kats, ?Quasihomogeneous cones,? Matem. Zametki,1, No. 3, 347?354 (1967).
[46] É. B. Vinberg and A. L. Onishchik, Seminar on Algebraic Groups and Lie Groups, 1967/68 [in Russian], Moscow (1969), 230 pp. · Zbl 0648.22009
[47] R. V. Vosilyus, ?On the theory of invariant affine connections on Lie groups,? Liet. Matem. Rinkinys,7, No. 1, 29?34 (1967).
[48] R. V. Vosilyus, ?On one class of invariant affine connections on Lie groups,? Liet. Matem. Rinkinys,8, No. 4, 699?726 (1968).
[49] R. V. Vosilyus, ?On connections on Lie groups,? Liet. Matem. Rinkinys,10, No. 4, 705?725 (1970).
[50] R. V. Vosilyus and A. Dreimanas, ?On the geometry of homogeneous spaces,? Liet. Matem. Rinkinys,11, No. 4, 773?782 (1971).
[51] I. M. Gel’fand and D. A. Kazhdan, ?Certain aspects of differential geometry and the computation of the cohomologies of Lie algebras of vector fields,? Dokl. Akad. Nauk SSSR,200, No. 2, 269?272 (1971).
[52] I. M. Gel’fand and A. A. Kirillov, ?On division rings connected with the enveloping algebras of Lie algebras,? Dokl. Akad. Nauk SSSR,167, No. 3, 503?505 (1966).
[53] I. M. Gel’fand and A. A. Kirillov, ?On the structure of the division ring of relations of an enveloping algebra of a semisimple Lie algebra,? Dokl. Akad. Nauk SSSR,180, No. 4, 775?777 (1968).
[54] I. M. Gel’fand and A. A. Kirillov, ?Structure of a Lie division ring connected with a semisimple splittable Lie algebra,? Funktsional’. Analiz i Ego Prilozhen.,3, No. 1, 7?26 (1969).
[55] I. M. Gel’fand and D. B. Fuks, ?Topology of noncompact Lie groups,? Funktsional’. Analiz i Ego Prilozhen.,1, No. 4, 33?45 (1967). · Zbl 0161.11601 · doi:10.1007/BF01075864
[56] I. M. Gel’fand and D. B. Fuks, ?Cohomologies of Lie groups with real coefficients,? Dokl. Akad. Nauk SSSR,176, No. 1, 24?27 (1967).
[57] I. M. Gel’fand and D. B. Fuks, ?Topological invariants of noncompact Lie groups, connected with infinite-dimensional representations,? Dokl. Akad. Nauk SSSR,177, No. 4, 762?766 (1967).
[58] I. M. Gel’fand and D. B. Fuks, ?Cohomologies of the Lie algebra of tangent vector fields of a smooth manifold,? Funltsional’. Analiz. i Ego Prilozhen.,3, No. 3, 32?52 (1969).
[59] I. M. Gel’fand and D. B. Fuks, ?Cohomologies of the Lie algebra of tangent vector fields of a smooth manifold,? Funktsional’. Analiz i Ego Prilozhen.,4, No. 2, 23?31 (1970).
[60] I. M. Gel’fand and D. B. Fuks, ?Cohomologies of the Lie algebras of vector fields with nontrivial coefficients,? Funktsional’. Analiz i Ego Prilozhen.,4, No. 3, 10?25 (1970).
[61] I. M. Gel’fand and D. B. Fuks, ?Upper bounds for the cohomologies of infinite-dimensional Lie algebras,? Funktsional’. Analiz i Ego Prilozhen,4, No. 4, 70?71 (1970).
[62] I. M. Gel’fand and D. B. Fuks, ?On cycles representing the cohomology classes of the Lie algebra of formal vector fields,? Uspekhi Matem. Nauk,25, No. 5, 239?240 (1970).
[63] I. M. Gel’fand and D. B. Fuks, ?Cohomologies of the Lie algebra of formal vector fields,? Izv. Akad. Nauk SSSR, Ser. Matem.,34, No. 2, 322?337 (1970).
[64] V. W. Guillemin, D. Quillen, and S. Sternberg, ?The classification of irreducible complex algebras of finite type,? Matematika (Periodic Collection of Translations of Foreign Articles),12, No. 6, 63?66 (1968).
[65] A. I. Golubyatnikov, ?Lie subgroups of a Lorentz group with a finite group component,? Dokl. Akad. Nauk SSSR,186, No. 3, 503?505 (1969). · Zbl 0217.08702
[66] A. I. Golubyatnikov and V. V. Lokhin, ?Tensor invariants of subgroups of the Lorentz group,? Dokl. Akad. Nauk SSSR,187, No. 2, 249?251 (1969). · Zbl 0191.52503
[67] L. V. Goncharova, ?On the cohomologies of Lie algebras of vector fields on algebraic curves,? Uspekhi Matem. Nauk,27, No. 1, 243?244 (1972). · Zbl 0233.57022
[68] V. V. Gorbatsevich, ?Discrete subgroups of solvable Lie groups of type (E),? Matem. Sb.,85, No. 2, 238?255 (1971). · Zbl 0229.22019
[69] S. M. Gusein-Zade, ?Fixed points of the U-actions of a circle,? Uspekhi Matem. Nauk,26, No. 4, 250 (1971).
[70] K. Doan, ?Poincaré polynomials of compact homogeneous Riemann spaces with an irreducible stationary group,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 14 [in Russian], Moskovsk. Univ., Moscow (1968), pp. 33?93.
[71] V. I. Evseev, ?Affine connection in a homogeneous space of logarithmic spirals,? Proc. Semin. Geom. Dept., No. 6 [in Russian], Kazansk. Univ., Kazan (1971), pp. 36?40.
[72] L. E. Evtushik, ?Differential connections and infinitesimal transformations of the extended pseudogroup,? Tr. Geometr. Seminara, Inst. Nauchn. Inform. Akad. Nauk SSSR,2, 119?150 (1969). · Zbl 0281.58003
[73] D. P. Zhelobenko, Compact Lie Groups and Their Representations [in Russian], Nauka, Moscow (1970), 664 pp. · Zbl 0228.22013
[74] I. A. Zhigulin, ?On certain orbit classes for the group of triangular matrices with unities on the main diagonal,? Uch. Zap. Mosk. Gos. Ped. Inst. im. V. I. Lenina, No. 271, 269?284 (1967).
[75] I. A. Zhigulin, ?On the orbit classification problem for the group of triangular unit matrices,? in: On the Problems of Mathematical Analysis and of Function Theory [in Russian], Stavropol’ (1968), pp. 119?129.
[76] G. A. Zaitsev, ?Representation of classical simple Lie algebras by an associative algebra of a quantified fermion field,? in: Gravitation and the Theory of Relativity, Nos. 4?5 [in Russian], Kazansk. Univ., Kazan (1968), pp. 157?163.
[77] S. L. Zimont and N. Ya. Mar’yashkin, ?Matrix elements of an irreducible representation of the finite rotation group of a three-dimensional space,? in: Algorithms and Algorithmic Language, No. 5 [in Russian], Vychisl. Tsentr Akad. Nauk SSSR, Moscow (1971), pp. 24?28.
[78] A. Jonu?auskas, ?Existence of invariant Finsler metrics in homogeneous spaces with a linear isotropy group of tensor type. II,? Liet. Matem. Rinkinys,7, No. 4, 619?631 (1967).
[79] A. Jonu?auskas, ?On certain properties of the geodesic lines of invariant affine connections in homogeneous spaces,? Liet. Matem. Rinkinys,9, No. 2, 387 (1969).
[80] D. A. Kazhdan, ?On the connection of the dual space of a group with the lattice of its closed subgroups,? Funktsional’. Analiz i Ego Prilozhen.,1, No. 1, 71?74 (1967).
[81] D. A. Kazhdan and G. A. Margulis, ?Proof of Selberg’s conjecture,? Matem. Sb.,75, No. 1, 163?168 (1968).
[82] I. L. Kantor, ?Transitive-differential groups and invariant connections on homogeneous spaces,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 13 [in Russian], Moskovsk. Univ., Moscow (1966), pp. 310?398.
[83] I. L. Kantor, ?Nonlinear groups of transformations defined by the general norms of Jordan algebras,? Dokl. Akad. Nauk SSSR,172, No. 4, 779?782 (1967). · Zbl 0167.30601
[84] I. L. Kantor, ?On infinite-dimensional simple graded Lie algebras,? Dokl. Akad. Nauk SSSR,179, No. 3, 534?537 (1968). · Zbl 0174.32401
[85] I. L. Kantor, ?General norm of a Jordan algebra and the geometry of certain transformation groups,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 14 [in Russian], Moskovsk. Univ., Moscow (1968), pp. 114?143.
[86] I. L. Kantor, ?Graded Lie algebras,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Physics., No. 15 [in Russian], Moskovsk. Univ., Moscow (1970), pp. 227?266. · Zbl 0221.17008
[87] I. L. Kantor, ?Some generalizations of Jordan algebras,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 16 [in Russian], Moskovsk. Univ., Moscow (1972), pp. 407?499. · Zbl 0272.17001
[88] I. L. Kantor, A. I. Sirota, and A. S. Solodovnikov, ?One class of symmetric spaces with a splittable group of motions and a generalization of Poincarés model,? Dokl. Akad. Nauk SSSR,173, No. 3, 511?514 (1967). · Zbl 0165.55505
[89] F. I. Karpelevich, ?Geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces,? Tr. Mosk. Matem. Obshch.,14, 48?185 (1965). · Zbl 0164.22202
[90] A. P. Kartashev, Maximal Primitive Subpseudogroups of Simple Infinite Transitive Pseudogroups [in Russian], All-Union Institute of Scientific and Technical Information (VINITI), Moscow (1968), 14 pp.
[91] A. P. Kartashev, ?On maximal subpseudogroups of an infinite symplectic pseudogroup,? Vestn. Mosk. Univ., Matem., Mekhan., No. 3, 41?51 (1968).
[92] A. P. Kartashev, ?Maximal subpseudogroups of simple infinite transitive pseudogroups,? Tr. Geometr. Seminara, Inst. Nauchn. Inform. Akad. Nauk SSSR,2, 151?159 (1969).
[93] V. G. Kats, ?Simple graded Lie algebras of finite growth,? Funktsional’. Analiz i Ego Prilozhen.,1, No. 4, 82?83 (1967).
[94] V. G. Kats, ?Graded Lie algebras and symmetric spaces,? Funktsional’. Analiz i Ego Prilozhen.,2, No. 2, 93?94 (1968).
[95] V. G. Kats, ?Simple irreducible graded Lie algebras of finite growth,? Izv. Akad. Nauk SSSR, Ser. Matem.,32, No. 6, 1223?1367 (1968).
[96] V. G. Kats, ?Finite-order automorphisms of semisimple Lie algebras,? Funktsional’. Analiz i Ego Prilozhen.,3, No. 3, 94?96 (1969).
[97] V. G. Kats, ?Algebraic definition of compact Lie groups,? Tr. Mosk. Inst. Élektron. Mashinostr., No. 5, 34?47 [1969(1970)].
[98] V. G. Kats, ?Some properties of contragradient algebras,? Tr. Mosk. Inst. Élektron. Mashinostr., No. 5, 48?59 [1969(1970)].
[99] V. G. Kats, ?Global Cartan pseudogroups and simple Lie algebras in characteristic p,? Uspekhi Matem. Nauk,26, No. 3, 199?200 (1971).
[100] B. N. Kimel’fel’d, ?Homogeneous domains on a conformal sphere,? Matem. Zametki,8, No. 3, 321?328 (1970).
[101] A. U. Klimyk, ?On the multiplicities of weights of representations and the multiplicities of representations of semisimple Lie algebras,? Dokl. Akad. Nauk SSSR,177, No. 5, 1001?1004 (1967). · Zbl 0239.17005
[102] A. U. Klimyk, ?Lattice of irreducible representations of leading vector of semisimple Lie algebras,? Dopovidi Akad. Nauk Ukrainsk. SSR,A, No. 11, 1001?1004 (1968).
[103] A. U. Klimyk, ?Decomposition of representations with highest weight of a semisimple Lie algebra into representations of a regular subalgebra,? Matem. Zametki,8, No. 6, 703?710 (1970). · Zbl 0228.17005
[104] A. T. Kondrat’ev, ?General homogeneous spaces of paths A3 (x, x) with affine motion groups G5,? Ukrain. Geometr. Sb., No. 8, 76?87 (1970).
[105] V. S. Konyukh, ?On solvable subgroups of a symplectic group,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Matem. Nauk, No. 5, 5?8 (1969).
[106] V. G. Kopp, ?On groups of infinitesimal rotations of k-dimensional Euclidean and Lorentz spaces,? Uch. Zap. Kazansk. Univ.,128, No. 3, 31?42 (1968).
[107] V. G. Kopp, ?On subgroups of rotations groups of Lorentz spaces,? in: Gravitation and the Theory of Relativity, No. 6 [in Russian], Kazansk. Univ., Kazan (1969), pp. 52?59.
[108] B. Kostant, ?Formula for multiplicity of weight,? Matematika (Periodic Collection of Translations of Foreign Articles),6, No. 1, 133?152 (1962).
[109] A. I. Kostrikin and I. R. Shafarevich, ?Graded Lie algebras in finite characteristic,? Izv. Akad. Nauk SSSR, Ser. Matem.,33, No. 2, 251?322 (1969).
[110] G. F. Kushner, ?On one compactification of noncompact symmetric Riemann spaces,? Dokl. Akad. Nauk SSSR,190, No. 6, 1282?1285 (1970).
[111] A. G. Kushnirenko, ?Analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one,? Funktsional’. Analiz i Ego Prilozhen.,1, No. 1, 103?104 (1967).
[112] A. G. Kushnirenko, ?Action of a solvable Lie group in a neighborhood of a fixed point,? Uspekhi Matem. Nauk,25, No. 2, 273?274 (1970). · Zbl 0221.22016
[113] M. Kyiv, ?Multiplicities of weights of representations of groups A2 and B2,? Tr. Inst. Fiz. i Astron. Akad. Nauk Eston. SSR, No. 33, 111?114 (1967).
[114] Gen-dao Li, ?On Weyl groups of real semisimple Lie algebras and their applications to the classification of maximal solvable subalgebras to within inner conjugacy,? Acta Math. Sinica,16, No. 1, 70?86 (1966).(See [459] below.)
[115] I. M. Lizin and L. A. Shelepin, ?Matrix elements of irreducible representations of a de Sitter group,? Teor. i Matem. Fiz.,11, No. 1, 69?77 (1972). · Zbl 0245.22021
[116] M. V. Losik, ?On linear connections on surfaces of a homogeneous space,? Memoirs Young Scientists Saratov Univ., Math. and Mech. [in Russian], Saratov (1969), pp. 65?70.
[117] M. V. Losik, ?On the cohomologies of infinite-dimensional Lie algebras of vector fields,? Funktsional’. Analiz i Ego Prilozhen.,4, No. 2, 43?53 (1970).
[118] M. V. Losik, ?On the cohomologies of a Lie algebra of vector fields with coefficients in a trivial unit representation,? Funktsional’. Analiz i Ego Prilozhen.,6, No. 1, 24?36 (1972).
[119] Ya. Kh. Lykhmus, ?Some remarks on singular contractions of Lie groups,? ENSV Tead. Akad. Toimetised. Füüs. Mat.,17, No. 1, 128?129 (1968).
[120] Ya. Kh. Lykhmus, ?Contractions of symplectic groups,? ENSV Tead. Akad. Toimetised. Füüs. Mat.,17, No. 4, 479?481 (1968).
[121] Ya. Kh. Lykhmus, ?Limit (contracted) Lie groups,? Second Summer School on Problems in the Theory of Elementary Particles, Otepya, Aug. 1967, Part 4 [in Russian], Tartu (1969), 132 pp.
[122] Ya. Kh. Lykhmus, ?Simplest contractions of nonassociative algebras,? ENSV Tead. Akad. Toimetised. Füüs. Mat.,20, No. 2, 213?215 (1971).
[123] V. S. Makarov, ?On one class of discrete groups of Lobachevskii space, having an infinite fundamental domain of finite measure,? Dokl. Akad. Nauk SSSR,167, No. 1, 30?33 (1966).
[124] V. S. Makarov, ?On one class of two-dimensional Fedorov groups,? Izv. Akad. Nauk SSSR, Ser. Matem.31, No. 3, 531?542 (1967).
[125] V. S. Makarov, ?On Fedorov groups of four-dimensional and five-dimensional Lobachevskii spaces,? in: Investigations on General Algebra, No. I [in Russian], Kishinev (1968), pp. 120?129.
[126] I. G. Macdonald, ?Affine root systems and Dedekind’s?-function,? Matematika (Periodic Collection of Translations of Foreign Articles),16, No. 4, 3?49 (1972). (See [470] below.)
[127] O. V. Manturov, ?Homogeneous Riemann spaces with an irreducible rotation group,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 13 [in Russian], Moskovsk. Univ., Moscow (1966), pp. 68?145.
[128] O. V. Manturov, ?On the Poincaré polynomials of certain homogeneous Riemann spaces,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 14 [in Russian], Moskovsk. Univ., Moscow (1968), pp. 20?32.
[129] O. V. Manturov, ?Geometric models of vector bundles over compact homogeneous spaces,? Dokl. Akad. Nauk SSSR,201, No. 2, 273?276 (1971). · Zbl 0249.55013
[130] O. V. Manturov, ?On the theory of vector bundles over compact homogeneous spaces,? Dokl. Akad. Nauk SSSR,202, No. 5, 1004?1007 (1972).
[131] G. A. Margulis, ?Discrete subgroups of real semisimple Lie groups,? Matem. Sb.,80, No. 4, 600?615 (1969).
[132] G. A. Margulis, ?On the problem of the arithmeticity of discrete groups,? Dokl. Akad. Nauk SSSR,187, No. 3, 518?520 (1969).
[133] G. A. Margulis, ?Isometricity of closed manifolds of constant negative curvature with a like fundamental group,? Dokl. Akad. Nauk SSSR,192, No. 4, 736?737 (1970).
[134] G. A. Margulis, ?On the action of unipotent groups in a lattice space,? Matem. Sb.,86, No. 4, 552?556 (1971).
[135] L. M. Markhashov, ?Three-parameter Lie groups adjacent to Galilei and Euclidean groups,? Prikl. Matem. i Mekhan.,35, No. 2, 278?289 (1971).
[136] A. S. Mishchenko, ?Integrals of geodesic flows on Lie groups,? Funktsional’. Analiz i Ego Prilozhen.,4, No. 3, 73?77 (1970).
[137] V. F. Molchanov, ?On the problem of computing the multiplicity of a weight,? Teor. i Matem. Fiz.,8, No. 2, 251?254 (1971).
[138] G. M. Mubaranzyanov, ?Some theorems on solvable Lie algebras,? Izv. Vyssh. Uchevn. Zavedenii, Matematika, No. 6, 95?98 (1966).
[139] R. O. Nazaryan, ?On the decomposition of certain simple real Lie groups,? Aikakan SSR Gitutyunneri Akademia, Zekuitsner,53, No. 4, 199?202 (1971).
[140] Hai Nguyen-van, ?Noncompact symmetry groups and the unitary S-matrix,? in: High-Energy Physics and the Theory of Elementary Particles [in Russian], Naukova Dumka, Kiev (1967), pp. 263?274.
[141] A. Nikolov, ?Casimir operators for the group O(n),? Izv. Fiz. Inst, c ANEB,18, 17?27 (1969).
[142] A. Nikolov, ?On a complete collection of commuting operators for the group O (n),? Izv. Fiz. Inst. c ANEB,18, 29?35 (1969).
[143] M. E. Novodvorskii, ?On certain motion groups of noncompact nonsingular symmetric spaces of rank 1,? Matem. Sb.,75, No. 2, 235?240 (1968).
[144] E. L. Nol’de, ?Nonnegative eigenfunctions of the Beltrami-Laplace operator on symmetric spaces with a complex semisimple motion group,? Uspekhi Matem. Nauk,21, No. 5, 260?261 (1966).
[145] A. L. Onishchik, ?On Lie groups transitive on compact manifolds,? Matem. Sb.,71, No. 4, 483?494 (1966). · Zbl 0198.28902
[146] A. L. Onishchik, ?On Lie groups transitive on compact manifolds. II,? Matem. Sb.,74, No. 3, 398?416 (1967). · Zbl 0198.28903
[147] A. L. Onishchik, ?On Lie groups transitive on compact manifolds. III,? Matem. Sb.,75, No. 2, 255?263 (1968). · Zbl 0198.29001
[148] A. L. Onishchik, ?On homogeneous vector bundles,? Uspekhi Matem. Nauk,24, No. 3, 231?232 (1969). · Zbl 0198.29001
[149] A. L. Onishchik, ?Decomposition of reductive Lie groups,? Matem. Sb.,80, No. 4, 553?599 (1969). · Zbl 0222.22011
[150] A. L. Onishchik, ?Lie groups transitive on the Grassmann and Stiefel manifolds,? Matem. Sb.,83, No. 3, 407?428 (1970). · Zbl 0252.57019
[151] A. M. Perelomov and V. S. Popov, ?Casimir operators for semisimple Lie groups,? Izv. Akad. Nauk SSSR, Ser. Matem.,32, No. 6, 1368?1390 (1968).
[152] V. L. Popov, ?Criterion for the stability of the action of a semisimple group on a factorial manifold,? Izv. Akad. Nauk SSSR, Ser. Matem.,34, No. 3, 523?531 (1970).
[153] I. I. Pyatetskii-Shapiro, ?Arithmetic groups in complex domains,? Uspekhi Matem. Nauk,19, No. 6, 93?121 (1964).
[154] I. I. Pyatetskii-Shapiro, ?The geometry and the classification of bounded homogeneous domains,? Uspekhi Matem. Nauk,20, No. 2, 3?51 (1965).
[155] I. I. Pyatetskii-Shapiro, ?Discrete subgroups of Lie groups (dedicated to the 60th anniversary of A. O. Gel’fond),? Tr. Mosk. Matem. Obshch.,18, 3?18 (1968).
[156] B. Z. Raishtein, ?On Lie algebras of one class,? Uch.Zap. Yaroslav. Gos. Ped. Inst., No. 61, 104?106 (1967).
[157] P. K. Rashevskii, ?On the real cohomologies of homogeneous spaces,? Uspekhi Matem. Nauk,24, No. 3, 23?90 (1969).
[158] P. K. Rashevskii, ?Tensors with a given invariance group and spherical functions on homogeneous spaces,? Tr. Mosk. Matem. Obshch.,20, 83?110 (1969).
[159] P. K. Rashevskii, ?On global projective models of complex homogeneous spaces,? Tr. Mosk. Matem. Obshch.,25, 3?14 (1971).
[160] P. K. Rashevskii, ?On the connection of the set of points of a Lie group, fixed under an automorphism of it,? Funktsional’. Analiz i Ego Prilozhen.,6, No. 4, 97?98 (1972).
[161] V. N. Reshetnikov, ?On the cohomologies of two algebras of vector fields on circles,? Uspekhi Matem. Nauk,26, No. 1, 231?232 (1971). · Zbl 0225.57025
[162] V. N. Reshetnikov, ?Cohomologies of a Lie algebra of vector fields on manifolds vanishing at a given point,? Uspekhi Matem. Nauk,27, No. 1, 251?252 (1972).
[163] A. A. Rivilis, ?Homogeneous locally-symmetric domains in a conformal space,? Dokl. Akad. Nauk SSSR,184, No. 3, 558?561 (1969).
[164] A. A. Rivilis, ?Homogeneous locally-symmetric domains in a conformal space,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 6, 96?105 (1970).
[165] A. A. Rivilis, ?Homogeneous locally-symmetric domains in homogeneous spaces associated with semisimple Jordan algebras,? Matem. Sb.,82, No. 3, 409?422 (1970).
[166] A. L. Rozenberg, ?Duality theorems for Lie groups and algebras,? Uspekhi Matem. Nauk,26, No. 6, 253?254 (1971).
[167] B. A. Rozenfel’d, I. M. Brik, N. I. Orekhova, and A. S. Panfilova, ?Base symmetric spaces of dual extensions of real simple Lie groups,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 6, 70?77 (1971). · Zbl 0229.22018
[168] B. A. Rozenfel’d and M. P. Zamakhovskii, ?Simple and quasisimple Jordan algebras,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 8, 111?121 (1971).
[169] B. A. Rozenfel’d and L. M. Karpova, ?Limit Lie groups,? Uch. Zap. Kolomensk. Ped. Inst.,8, 8?22 [1964(1965)].
[170] B. A. Rozenfel’d and L. M. Karpova, ?Flag groups and contractions of Lie groups,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 13 [in Russian], Moskovsk. Univ., Moscow (1966), pp. 168?202. · Zbl 0168.27404
[171] B. I. Rozenfel’d, ?On one-dimensional cohomologies of a Lie algebra of contact vector fields,? Funktsional’. Analiz i Ego Prilozhen.,4, No. 2, 91?92 (1970). · Zbl 0239.14012 · doi:10.1007/BF01094483
[172] B. I. Rozenfel’d, ?Cohomologies of certain infinite-dimensional Lie algebras,? Funktsional’. Analiz i Ego Prilozhen.,5, No. 4, 84?85 (1971). · Zbl 0245.46069 · doi:10.1007/BF01075860
[173] A. N. Rudakov, ?Automorphism groups of infinite-dimensional simple Lie algebras,? Izv. Akad. Nauk SSSR, Ser. Matem.,33, No. 4, 748?764 (1969).
[174] Yu. B. Rumer and A. I. Fet, Theory of Unitary Symmetry [in Russian], ?Nauka,? Moscow (1970), 400 pp.
[175] T. L. Rybakova, ?On certain special automorphisms of graded Lie algebras,? Uch. Zap. Yaroslavsk. Gos. Ped. Inst., No. 64 (1969).
[176] T. L. Rybakova, ?Certain automorphisms of graded Lie algebras,? Uch. Zap. Yaroslavsk. Gos. Ped. Inst.,83, 102?108 (1971).
[177] L. V. Sabinin, ?On the principal invomorphisms of Lie algebras,? Dokl. Akad. Nauk SSSR,175, No. 1, 31?33 (1967). · Zbl 0248.17007
[178] L. V. Sabinin, ?On involutive sums of Lie algebras,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 14 [in Russian], Moskovsk. Univ., Moscow (1968), pp. 94?113. · Zbl 0248.17006
[179] L. V. Sabinin, ?Principal invomorphisms of compact Lie algebras,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 15 [in Russian], Moskovsk. Univ., Moscow (1970), pp. 188?226. · Zbl 0248.17007
[180] L. V. Sabinin, ?Homogeneous Riemann spaces with (n?1)-dimensional mirrors,? in: Certain Boundary-Value Problems for Ordinary Differential Equations [in Russian] (1970), pp. 116?126.
[181] L. V. Sabinin, ?Reductive spaces with an absolute projective connection,? in: Certain Boundary-Value Problems for Ordinary Differential Equations [in Russian] (1970), pp. 127?139.
[182] L. V. Sabinin, ?On the classification of trisymmetric spaces,? Dokl. Akad. Nauk SSSR,194, No. 3, 518?520 (1970). · Zbl 0215.23401
[183] É. T. Samsonadze, ?Character of an irreducible representation of the orthogonal Lie algebra D3,? Sakartvelos SSR Metsnierebata Akademiis Moambe,62, No. 2, 273?275 (1971).
[184] É. T. Samsonadze, ?On the dependency between the characters of irreducible representations of the symplectic Lie algebra Cn and the orthogonal Lie algebra Dn,? Sakartvelos SSR Metsnierebata Akademiis Moambe,63, No. 3, 537?540 (1971).
[185] A. Selberg, ?A recent development in the theory of discrete motion groups of symmetric spaces,? Matematika (Periodic Collection of Translations of Foreign Articles),26, No. 4, 72?89 (1972).
[186] I. N. Semenova, ?Limit projective spaces,? Uch. Zap. Kolomensk. Ped. Inst.,8, 165?174 [1964(1965)].
[187] V. I. Semyanistyi, ?Symmetric domains and Jordan algebras,? Dokl. Akad. Nauk SSSR,190, No. 4, 788?791 (1970).
[188] J.-P. Serre, Lie Algebras and Lie Groups [Russian translation], Mir, Moscow (1969), 375 pp.
[189] J.-P. Serre, ?Cohomologies of discrete groups,? Matematika (Periodic Collection of Translations of Foreign Articles),15, No. 5, 3?6 (1971).
[190] V. T. Simoniya, ?On the characters of representations of orthogonal groups,? Uch. Zap. Yugo-Osetinsk. Gos. Ped. Inst., Ser. Fiz.-Matem. i Biol. Nauki,13, 25?36 (1968).
[191] A. I. Sirota, ?Classification of real simple Lie groups (in the large),? Uch. Zap. Mosk. Gos. Ped. Inst., No. 243, 345?365 (1965).
[192] A. I. Sirota, ?Simple subgroups of simply-connected simple real Lie groups,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 14 [in Russian], Moskovsk. Univ., Moscow (1968), pp. 3?19.
[193] P. T. Smelov, ?On one class of the maximal Lie algebras of transformations, connected with Jordan algebras,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 15 [in Russian], Moskovsk. Univ., Moscow (1970), pp. 267?278. · Zbl 0223.17006
[194] G. A. Sokolik, ?Spinor representations of inhomogeneous groups,? in: Problems in the Theories of Gravitation and of Elementary Particles, No. 3 [in Russian], Atomizdat, Moscow (1970), pp. 15?24.
[195] N. A. Stepanov, ?On the reductivity of factor spaces generated by endomorphisms of Lie groups,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 2, 74?79 (1967).
[196] N. A. Stepanov, ?Basic facts in the theory of?-spaces,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 3, 88?95 (1967).
[197] N. A. Stepanov, ?Homogeneous 3-cyclic spaces,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 12, 65?74 (1967).
[198] N. A. Stepanov, ??-spaces in the case of a general linear group,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 3, 70?79 (1972).
[199] D. A. Suprunenko, ?On the theory of solvable linear groups,? Dokl. Akad. Nauk SSSR,184, No. 1, 47?50 (1969). · Zbl 0201.03301
[200] Hui-min Tao, ?Maximal nonsemisimple subalgebras of noncompact real semisimple Lie algebras,? Acta Math. Sinica,16, No. 2, 253?268 (1966). (see [646] below.)
[201] N. N. Tret’yakova, ?Generating functions for the matrix elements of irreducible unitary representations of the rotation group SO (n) of an n-dimensional space,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Matem. Nauk, No. 3, 40?41 (1969).
[202] A. S. Fedenko, ?On limit groups and homogeneous spaces,? Proc. II Repub. Conf. Belorussian Mathematicians [in Russian], Belorussk. Univ., Minsk (1969), pp. 144?146.
[203] A. S. Fedenko, ?Homogeneous?-spaces and spaces with symmetries,? Vestn. Belorussk. Univ., Ser. I, No. 2, 25?30 (1972).
[204] A. T. Fomenko, ?Real cohomologies of certain homogeneous spaces,? in: Abstract of Reports at the Scientific Conference of Young Scientists of Moscow State University [in Russian], Moskovsk. Univ., Moscow (1968), pp. 20?22.
[205] A. T. Fomenko, ?Certain cases of realization of the elements of homotopic groups of homogeneous spaces of fully-geodesic spheres,? Dokl. Akad. Nauk SSSR,190, No. 4, 792?795 (1970).
[206] A. T. Fomenko, ?Poincaré polynomials of certain homogeneous spaces,? Proc. Semin. Vector and Tensor Anal. with Appl. to Geom., Mech., and Phys., No. 15 [in Russian], Moskovsk. Univ., Moscow (1970), pp. 128?152.
[207] D. Khadzhiev, ?Description of closed orbits and of the closures of nonclosed orbits in the irreducible representations of the Lorentz group,? Dokl. Akad. Nauk Uzbek. SSR, No. 12, 3?6 (1966).
[208] D. Khadzhiev, ?Certain aspects of the theory of vector invariants,? Matem. Sb.,72, No. 3, 420?435 (1967). · Zbl 0218.22013
[209] D. Khadzhiev, ?On an integral rational base in algebras of invariants of irreducible representations of the rotation group of a three-dimensional space,? Nauchn. Tr. Tashkentsk. Univ., No. 316, 257?270 (1968).
[210] M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison-Wesley Publ. Co., Reading, Mass. (1962), 509 pp. · Zbl 0100.36704
[211] Sen Ch’iu, ?On the classification of complex and real solvable Lie algebras,? Huadong Shida Xuebao, No. 1, 99?116 (1965).
[212] O. V. Shvartsman, ?On the discrete arithmetic subgroups of complex Lie groups,? Matem. Sb.,77, No. 4, 542?544 (1968).
[213] O. V. Shvartsman, ?Linear representations of groups generated by reflections,? Matem. Sb.,82, No. 3, 494?498 (1970).
[214] A. P. Shirokov, ?On symmetric spaces defined by fourth-order commutative algebras,? Uch. Zap. Kazansk. Univ.,126, No. 1, 60?68 (1966).
[215] A. G. Elashvili, ?On the spectra of semisimple linear Lie groups,? Sakartvelos SSR Metsnierebata Akademiis Moambe,57, No. 3, 529?532 (1970).
[216] A. G. Elashvili, ?Canonic form and stationary subalgebras of points in general position for simple linear Lie groups,? Funktsional’. Analiz i Ego Prilozhen.,6, No. 1, 51?62 (1972).
[217] A. G. Elashvili, ?Stationary subalgebras of points of common position for irreducible linear Lie groups,? Funktsional’. Analiz i Ego Prilozhen.,6, No. 2, 65?78 (1972). · Zbl 0262.47009 · doi:10.1007/BF01075514
[218] V. G. Yaichintsyn, ?Casimir operators of the unitary group U (n),? Vestn. Kievsk. Politekhn. Inst., Ser. Radioelektron., No. 6, 145?147 (1969).
[219] H. Abels, ?Über die Erzeugung von eigentlichen Transformationsgruppen,? Math. Z.,103, No. 5, 333?357 (1968). · Zbl 0315.54046 · doi:10.1007/BF01145965
[220] H. Abels, ?Über eigentliche Transformationsgruppen,? Math. Z.,110, No. 1, 75?100 (1969). · Zbl 0182.36004 · doi:10.1007/BF01114641
[221] J. F. Adams, Lectures on Lie Groups, Benjamin, New York (1969), 182 pp. · Zbl 0206.31604
[222] V. K. Agrawala and J. G. Belinfante, ?Weight diagrams for Lie group representations. A computer implementation of Freudenthal’s Algorithm in ALGOL and FORTRAN,? BIT (Sver.),9, No. 4, 301?314 (1969). · Zbl 0224.68004 · doi:10.1007/BF01935862
[223] V. K. Agrawala and J. G. Belinfante, ?An algorithm for computing SU (n) invariants,? BIT (Sver.),11, No. 1, 1?15 (1971). · Zbl 0226.20002 · doi:10.1007/BF01935323
[224] R. H. Albert, ?Computer-calculated explicit forms for representations of the three-dimensional pure rotation group,? Proc. Cambridge Phil. Soc.,65, No. 1, 107?110 (1969). · doi:10.1017/S0305004100044133
[225] S. J. Ali?auskas and A. P. Jucys, ?Weight lowering operators and the multiplicity-free isoscalar factors for the group R5,? J. Math. Phys.,12, No. 4, 594?605 (1971). · Zbl 0214.28902 · doi:10.1063/1.1665626
[226] H. P. Allen and J. C. Ferrar, ?Jordan algebras and exceptional subalgebras of the exceptional algebra E6,? Pacif. J. Math.,32, No. 2, 283?297 (1970). · Zbl 0196.06201 · doi:10.2140/pjm.1970.32.283
[227] C. M. Andersen, ?Clebsch-Gordan series for symmetrized tensor products,? J. Math. Phys.,8, No. 5, 988?997 (1967). · Zbl 0162.58402 · doi:10.1063/1.1705333
[228] S. Araki, ?Hopf structures attached to K-theory: Hodgkin’s theorem,? Ann. Math.,85, No. 3, 508?525 (1967). · Zbl 0171.43903 · doi:10.2307/1970356
[229] S. Araki, ?Primitive invariants and conjugate classes of fundamental representations of a compact simply-connected Lie group,? Mich. Math. J.,14, No. 1, 29?32 (1967). · Zbl 0171.44001 · doi:10.1307/mmj/1028999654
[230] R. Arens, ?Hamiltonian structures for homogeneous spaces,? Commun. Math. Phys.,21, No. 2, 125?138 (1971). · Zbl 0211.24402 · doi:10.1007/BF01646747
[231] F. Aribaud, ?Une nouvelle démonstration d’un théorème de R. Bott et B. Kostant,? Bull. Soc. Math. France,95, No. 3, 205?242 [1967(1968)]. · Zbl 0155.06901 · doi:10.24033/bsmf.1653
[232] V. Arnold, ?Sur lé géometrie différentielle des groupes de Lie de dimension infinite et ses applications a l’hydrodynamique des fluides parfaits,? Ann. Inst. Fourier,16, No. 1, 319?361 (1966). · Zbl 0148.45301 · doi:10.5802/aif.233
[233] H. Asano, ?A remark on the Coxeter-Killing transformations of finite reflection groups,? Yokohama Math. J.,15, No. 2, 45?49 (1967). · Zbl 0157.35601
[234] H. Asano, ?On the irreducibility of homogeneous convex cones,? J. Fac. Sci., Univ. Tokyo, Sec. 1,15, No. 2, 201?208 (1968). · Zbl 0186.40502
[235] M. F. Atiyah, ?On the K-theory of compact Lie groups,? Topology,4, No. 1, 95?99 (1965). · Zbl 0136.21001 · doi:10.1016/0040-9383(65)90051-0
[236] M. F. Atiyah and G. B. Segal, ?Equivariant K-theory and completion,? J. Different. Geom.,3, No. 1, 1?18 (1969). · Zbl 0215.24403 · doi:10.4310/jdg/1214428815
[237] L. Auslander, ?On the theory of solvmanifolds and generalization with applications to differential geometry,? in: Differential Geometry, Amer. Math. Soc., Providence, R. I. (1961), pp. 138?143.
[238] L. Auslander and J. Brezin, ?Almost algebraic Lie algebras,? J. Algebra,8, No. 3, 295?313 (1968). · Zbl 0197.03002 · doi:10.1016/0021-8693(68)90061-6
[239] L. Auslander and R. Tolimieri, ?On a conjecture of G. D. Mostow and the structure of solvmanifolds,? Bull. Amer. Math. Soc.,75, No. 6, 1330?1333 (1969). · Zbl 0213.31403 · doi:10.1090/S0002-9904-1969-12416-X
[240] L. Auslander and R. Tolimieri, ?Splitting theorems and the structure of solvmanifolds,? Ann. Math.,92, No. 1, 164?173 (1970). · Zbl 0229.22020 · doi:10.2307/1970700
[241] H. Bacry, Lecons sur la Théorie des Groupes et les Symétries des Particules Élementaires, Gordon and Breach, Paris-London-New York (1967), 449 pp.
[242] H. Bacry, ?Sur les généralisations relativistes des groupes dynamiques,? Colloq. Int. Centre Nat. Rech. Sci., No. 159, 71?76 (1968).
[243] W. L. Baily, Jr. and A. Borel, ?Compactification of arithmetic quotients of bounded symmetric domains,? Ann. Math.,84, No. 3, 442?528 (1966). · Zbl 0154.08602 · doi:10.2307/1970457
[244] V. K. Balachandran, ?On the uniqueness of the inner product topology in a semi-simple L*-algebra,? Topology,7, No. 3, 305?309 (1968). · Zbl 0183.42004 · doi:10.1016/0040-9383(68)90007-4
[245] V. K. Balachandran, ?Simple system of roots in L*-algebras,? Trans. Amer. Math. Soc.,130, No. 3, 513?524 (1968).
[246] V. K. Balachandran, ?Simple L*-algebras of classical type,? Math. Ann.,180, No. 3, 205?219 (1969). · Zbl 0159.42203 · doi:10.1007/BF01350738
[247] W. Barth and M. Otte, ?Über fast-uniforme Untergruppen komplexer Liegruppen und auflösbare komplexe Manigfaltigkeiten,? Comment. Math. Helv.,44, No. 3, 269?281 (1969). · Zbl 0172.37804 · doi:10.1007/BF02564528
[248] P. F. Baum, ?Local isomorphism of compact connected Lie groups,? Pacif. J. Math.,22, No. 2, 197?204 (1967). · Zbl 0178.02802 · doi:10.2140/pjm.1967.22.197
[249] R. E. Beck, ?Connections on semisimple Lie groups,? Trans. Amer. Math. Soc.,164, 453?460 (1972). · doi:10.1090/S0002-9947-1972-0289727-X
[250] J. G. Belinfante and B. Kolman, ?An introduction to Lie groups and Lie algebras, with applications. III. Computational methods and applications of representation theory,? SIAM Rev.,11, No. 4, 510?543 (1969). · Zbl 0214.28702 · doi:10.1137/1011087
[251] G. Berendt, ?Contraction of Lie algebras on the reversal problem,? Acta Phys. Austriaca,25, No. 3, 207?211 (1967). · Zbl 0163.22601
[252] L. C. Biedenharn, A. Giovannini, and J. D. Louck, ?Canonical definition of Wigner coefficients in Un,? J. Math. Phys.,8, No. 4, 691?700 (1967). · Zbl 0156.46402 · doi:10.1063/1.1705266
[253] L. C. Biedenharn and J. D. Louck, ?A pattern calculus for tensor operators in the unitary groups,? Commun. Math. Phys.,8, No. 2, 89?131 (1968). · Zbl 0155.32405 · doi:10.1007/BF01645800
[254] R. J. Blattner, ?A theorem of Cartan and Guillemin,? J. Different. Geom.,5, Nos. 3?4, 295?305 (1971). · Zbl 0235.17010 · doi:10.4310/jdg/1214429993
[255] L. Bo?ek, ?Untermannigfaltigkeiten von homogenen Räumen,? Czech. Math. J.,21, No. 1, 1?4 (1971).
[256] A. Borel, ?Density and maximality of arithmetic subgroups,? J. Reine und Angew Math.,224, 78?89 (1966). · Zbl 0158.03105
[257] A. Borel, Introduction aux Groupes Arithmétiques, Paris (1969), 125 pp. · Zbl 0186.33202
[258] A. Borel, ?Sous-groupes discrete de groupes semi-simples (d’apres D. A. Kajdan et G. A. Margoulis),? Lect. Notes Math., No. 179, 199?215 (1971). · Zbl 0225.22017 · doi:10.1007/BFb0058813
[259] W. M. Boothby, ?Homogeneous complex contact manifolds,? in: Differential Geometry, Amer. Math. Soc., Providence, R. I. (1961), pp. 144?154.
[260] R. Bott, ?The periodicity theorem for the classical groups and some of its applications,? Adv. Math.,4, No. 3, 353?411 (1970). · Zbl 0231.55010 · doi:10.1016/0001-8708(70)90030-7
[261] N. Bourbaki, Groupes et Algé’bres de Lie. Ch. 4?6. Elements de Mathématiques, Fasc XXXIV, Hermann et Cie., Paris (1968), 288 pp.
[262] G. E. Bredon, ?Exotic actions on spheres,? Proc. Conf. Transform. Groups, 1967, Springer-Verlag, Berlin-Heidelberg-New York (1968), pp. 47?76.
[263] G. E. Bredon, ?The set of nonprincipal orbits of an action on En,? Proc. Amer. Math. Soc.,23, No. 2, 254?255 (1969). · Zbl 0186.27202
[264] W. Browder, ?Homology rings of groups,? Amer. J. Math.,90, No. 1, 318?333 (1968). · Zbl 0155.50901 · doi:10.2307/2373440
[265] R. B. Brown, ?Groups of type E7,? J. Reine und Angew. Math.,236, 79?102 (1969).
[266] M. Brunet and M. Resnikoff, ?The representations ofU (4)?U (2)\(\times\)U(2),? J. Math. Phys.,11, No. 4, 1474?1481 (1970). · doi:10.1063/1.1665282
[267] C. Buttin, ?Étude d’un cas d’isomorphisme d’une alg?bre de Lie filtrée avec son alg?bre graduée associée,? C. R. Acad. Sci. Paris,264, No. 11, A496-A498 (1967). · Zbl 0178.03604
[268] C. Buttin, ?Les derivations des champs de tenseurs et l’invariant différentiel de Schouten,? C. R. Acad. Sci. Paris,269, No. 2, A87-A89 (1969). · Zbl 0187.43904
[269] C. Buttin, ?Invariant de Schouten et groupes de Lie,? C. R. Acad. Sci. Paris,269, No. 25, A1208-A1210 (1969). · Zbl 0188.26202
[270] M. Cahen and M. Parker, ?Sur les classes d’espaces pseudo-riemanniens symétriques,? Bull. Soc. Math. Belg.,22, No. 4, 339?354 (1970). · Zbl 0218.53067
[271] M. Cahen and N. Wallach, ?Lorentzian symmetric spaces,? Bull. Amer. Math. Soc.,76, No. 3, 585?591 (1970). · Zbl 0194.53202 · doi:10.1090/S0002-9904-1970-12448-X
[272] E. Calabi, ?On differentiable actions of compact Lie groups on compact manifolds,? Proc. Conf. Transform. Groups, 1967, Springer-Verlag, Berlin-Heidelberg-New York (1968), pp. 210?213.
[273] J. E. Campbell, Introductory Treatise on Lie’s Theory of Finite Continuous Transformation Groups, Bronx, N. Y. (1966), 416 pp. · Zbl 0158.03101
[274] R. Carroll, ?Local forms of invariant differential operators,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,48, No. 6, 566?571 (1970).
[275] R. Carroll, ?Local forms of invariant differential operators. I,? Ann. Mat. Pura ed Appl.,86, 189?215 (1970). · Zbl 0228.58010 · doi:10.1007/BF02415719
[276] J. C. Carter and J. J. Coyne, ?SU (6) Clebsch-Gordan coefficients for the product 35?70,? J. Math. Phys.,10, No. 7, 1204?1210 (1969). · doi:10.1063/1.1664959
[277] U. Cattaneo, ?Irreducible Lie algebra extensions of the Poincaré algebra. I. Extensions with Abelian kernels,? Commun. Math. Phys.,13, No. 3, 226?245 (1969). · Zbl 0183.28902 · doi:10.1007/BF01645489
[278] U. Cattaneo, ?Sliced extensions, irreducible extensions and associated graphs: an analysis of Lie algebra extensions. I,? J. Math. Phys.,13, No. 4, 504?518 (1972). · Zbl 0238.17002 · doi:10.1063/1.1666008
[279] U. Cattaneo, ?Sliced extensions, irreducible extensions and associated graphs: an analysis of Lie algebra extensions. II,? J. Math. Phys.,13, No. 4, 518?528 (1972). · Zbl 0238.17003 · doi:10.1063/1.1666010
[280] I. Cattaneo-Gasparini, ?Introduction d’une différentiation totale de Lie sur un espace homogène réductif,? C. R. Acad. Sci. Paris,272, No. 18, A1192-A1194 (1971). · Zbl 0212.26703
[281] A. Cerezo and F. Rouvi?ri, ?Solution élémentaire d’un opérateur différentiel linéaire invariant à gauche sur un groupe de Lie réel compact et sur un espace homog?ne réductif compact,? Ann. Sci. École Norm. Supér.,2, No. 4, 561?581 (1969(1970)). · Zbl 0191.43801 · doi:10.24033/asens.1184
[282] M. O. Chacin, ?Sur le prolongement: d’alg?bres de Lie filtrées,? Th?se Doct. Math. Pures, Fac. Sci. Univ. Grenoble (1970), 47 pp.
[283] E. Chacón, ?Representation coefficients for the SU (3) group,? Rev. Mex. Fis.,17, No. 4, 315?325 (1968).
[284] I. Chavel, ?Isotropic Jacobi fields and Jacobi’s equations on Riemannian homogeneous spaces,? Comment. Math. Helv.,42, No. 3, 237?248 (1967). · Zbl 0166.17501 · doi:10.1007/BF02564419
[285] I. Chavel, ?On normal Riemannian homogeneous spaces of rank 1,? Bull. Amer. Math. Soc.,73, No. 3, 477?481 (1967). · Zbl 0153.23102 · doi:10.1090/S0002-9904-1967-11787-7
[286] I. Chavel, ?A class of Riemannian homogeneous spaces,? J. Different. Geom.,4, No. 1, 13?20 (1970). · Zbl 0197.18302 · doi:10.4310/jdg/1214429272
[287] I. Chavel, ?On Riemannian symmetric spaces of rank one,? Adv. Math.,4, No. 3, 236?263 (1970). · Zbl 0199.56403 · doi:10.1016/0001-8708(70)90025-3
[288] I. Chavel, ?On non-Riemannian sectional curvature in Riemannian homogeneous spaces,? Tôhoku Math. J.,23, No. 2, 169?172 (1971). · Zbl 0217.47502 · doi:10.2748/tmj/1178242638
[289] M. Chein, ?Recherche des graphes des matrices de Coxeter hyperboliques d’ordre ?10,? Rev. Franc. Inform, et Rech. Opér.,3, No. R-3, 3?16 (1969).
[290] Su-shing Chen, ?On Riemannian symmetric spaces of rank one and of classical type,? Doct. Diss., Univ. Maryland, College Park, Md. (1970), 80 pp; Diss. Abstrs. Int.,B31, No. 11, 6741 (1971).
[291] M. P. Closs, ?Homogeneous almost-tangent structures,? Proc. Amer. Math. Soc.,23, No. 2, 237?241 (1969). · doi:10.1090/S0002-9939-1969-0253222-X
[292] C. W. Conatser, ?Contractions of the low-dimensional real Lie algebras,? J. Math. Phys.,23, No. 2, 197?203 (1972). · Zbl 0244.17003
[293] L. Conlon, ?Applications of affine root systems to the theory of symmetric spaces,? Bull. Amer. Math. Soc.,75, No. 3, 610?613 (1969). · Zbl 0179.28901 · doi:10.1090/S0002-9904-1969-12261-5
[294] L. Conlon, ?Remarks on commuting involutions,? Proc. Amer. Math. Soc.,22, No. 1, 255?257 (1969). · Zbl 0179.05002 · doi:10.1090/S0002-9939-1969-0243552-X
[295] L. Conlon, ?Variational completeness and K-transversal domains,? J. Different. Geom.,5, Nos. 1?2, 135?147 (1971). · Zbl 0213.48602 · doi:10.4310/jdg/1214429783
[296] P. Cordero and G. C. Ghiradi, ?Realizations of Lie algebras and the algebraic treatment of quantum problems,? Fortschr. Phys.,20, No. 2, 105?133 (1972). · doi:10.1002/prop.19720200203
[297] J. F. Cornwell, ?Isomorphisms between simple real Lie algebras,? Repts. Math. Phys.,2, No. 3, 153?163 (1971). · Zbl 0221.22017 · doi:10.1016/0034-4877(71)90001-2
[298] J. F. Cornwell, ?The centralizer of a compact simple subgroup of a classical compact simple Lie group,? Repts. Math. Phys.,2, No. 4, 229?238 (1971). · Zbl 0225.22014 · doi:10.1016/0034-4877(71)90007-3
[299] J. F. Cornwell, ?Semi-simple real subalgebras of non-compact semi-simple real Lie algebras. II,? Repts. Math. Phys.,2, No. 4, 289?309 (1971). · Zbl 0238.17008 · doi:10.1016/0034-4877(71)90012-7
[300] J. F. Cornwell,?Semi-simple real subalgebras of non-compact semi-simple real Lie algebras. III,? Repts. Math. Phys.,3, No. 2, 91?107 (1972). · Zbl 0234.17005 · doi:10.1016/0034-4877(72)90023-7
[301] H. S. M. Coxeter, ?Finite groups generated by unitary reflections,? Abh. Math. Semin. Univ. Hamburg,31, Nos. 125?135 (1967).
[302] M. Craioveanu, ?Grupuri Lie-Banach de transform?ri ce las? invariant un obiect geometric,? Stud. Si Cere. Mat. Acad. RSR,20, No. 6, 833?840 (1968).
[303] M. Craioveanu, ?Asupra unei clase de fibrari differentiabile,? An. Sti. Univ. Iasi, Sec. la,15, No. 2, 407?422 (1969).
[304] A. van Daele, ?On a certain class of semi-simple subalgebras of a semi-simple Lie algebra,? Ann. Inst. H. Poincaré,A13, 195?213 (1970). · Zbl 0206.32201
[305] V. S. Devi, ?Bases for irreducible representations of the unitary group in the symplectic group chain,? J. Math. Phys.,11, No. 1, 162?168 (1970). · Zbl 0199.34602 · doi:10.1063/1.1665043
[306] V. S. Devi, ?Bases for representations of the unitary group in the rotation group chain,? Rev. Mex. Fis.,19, No. 1, 51?65 (1970). · Zbl 0199.34602
[307] V. S. Devi and L. S. R. K. Prasad, ?State labeling of the irreducible representations of SUn,? J. Math. Phys.,9, No. 3, 384?385 (1968). · Zbl 0162.58303 · doi:10.1063/1.1664590
[308] V. S. Devi and T. Venkatarayudu, ?Bases for the representations of U4 in the chainU 4?U*2*U*2,? J. Math. Phys.,9, No. 7, 1057?1058 (1968). · Zbl 0159.29201 · doi:10.1063/1.1664675
[309] V. S. Devi and T. Venkatarayudu, ?Bases for the representations of U2n in the chainU*2n?U*n*U*n,? J. Math. Phys.,11, No. 1, 169?173 (1970). · Zbl 0199.34603 · doi:10.1063/1.1665044
[310] A. Diaz-Miranda, ?Idéaux de l’algèbre de Lie de champs de vecteurs hamiltoniens,? C. R. Acad. Sci. Paris,274, No. 12, A989-A992 (1972). · Zbl 0233.58008
[311] J. Dieudonné, ?Representationes de grupos compactosy funciones esféricas,? Cursos y Semin. Mat. Univ. Buenos Aires, No. 14, Buenos Aires (1964), 236 pp.
[312] J. Dixmier, ?Sur les groupes de Lie resolubles a racines purement imaginaires,? Bull. Sci. Math.,90, Nos. 1?2, 5?16 (1966). · Zbl 0163.36902
[313] J. Dixmier, ?Sur le centre de l’algèbre enveloppante d’une algèbre de Lie,? C. R. Acad. Sci. Paris,265, No. 15, A408-A410 (1967). · Zbl 0149.27804
[314] J. Dixmier, ?Polarisations dans les algèbres de Lie,? Ann. Sci. École Norm. Supér.,4, No. 3, 321?335 (1971). · Zbl 0219.17004 · doi:10.24033/asens.1213
[315] H. D. Doebner and T. D. Palev, ?Realizations of Lie algebras through rational functions of canonical variables,? Acta Phys. Austr.,31, Suppl. No. 7, 597?609 (1970). · Zbl 0215.38504
[316] G. Domokos and G. L. Tindle, ?On subalgebras which survive contraction,? Commun. Math. Phys.,7, No. 2, 160?163 (1968). · Zbl 0152.41801 · doi:10.1007/BF01648333
[317] J. S. Dowker and M. Goldstone, ?The geometry and algebra of the representations of the Lorentz group,? Proc. Roy. Soc.,A303, No. 1474, 381?396 (1968). · Zbl 0196.05201 · doi:10.1098/rspa.1968.0056
[318] M. Duflo and M. Vergne, ?Une propriéte de la représentation coadjointe d’une alg?bre de Lie,? C. R. Acad. Sci. Paris,268, No. 11, A583-A585 (1969). · Zbl 0192.37402
[319] M. Duflo, ?Caract?res des alg?bres de Lie résolubles,? C. R. Acad. Sci. Paris,269, No. 12, A437-A438 (1969).
[320] M. Duflo, ?Représentations induites d’algèbres de Lie,? C. R. Acad. Sci. Paris,272, No. 18, A1157-A1158 (1971). · Zbl 0215.09503
[321] J. L. Dyer, ?A nilpotent Lie algebra with nilpotent automorphism group,? Bull. Amer. Math. Soc.,76, No. 1, 52?56 (1970). · Zbl 0198.05402 · doi:10.1090/S0002-9904-1970-12364-3
[322] D. G. Ebin and J. E. Mardsen, ?Group of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid,? Bull. Amer. Math. Soc.,75, No. 5, 962?967 (1969). · Zbl 0183.54502 · doi:10.1090/S0002-9904-1969-12315-3
[323] M. Eichler, ?A new proof of the Baker-Campbell-Hausdorff formula,? J. Math. Soc. Jap.,20, Nos. 1?2, 23?25 (1968). · Zbl 0157.07601 · doi:10.2969/jmsj/02010023
[324] E. Eriksen, ?Properties of higher-order commutator products and the Baker-Hausdorff formula,? J. Math. Phys.,9, No. 5, 790?796 (1968). · Zbl 0169.04703 · doi:10.1063/1.1664643
[325] M. Flato and D. Sternheimer, ?Sur l’unification des symétries interne et externe,? Colloq. Int. Centre Nat. Rech. Sci., No. 159, 47?60 (1968).
[326] O. Fleischman and J. G. Nagel, ?Double structure of a combined internal and space-time symmetry group and mass splitting,? J. Math. Phys.,8, No. 5, 1128?1134 (1967). · Zbl 0164.56801 · doi:10.1063/1.1705327
[327] M. Florae, ?Enveloppe presque algébrique d’une algébre de Lie,? C. R. Acad. Sci. Paris,272, No. 3, A207-A209 (1971).
[328] J. Folkman, Equivariant Maps of Spheres into Classical Groups, Mem. Amer. Math. Soc., No. 95, Amer. Math. Soc., Providence, R. I. (1971), 42 pp. · Zbl 0236.57025
[329] C. Freifeld, ?A conjecture concerning transitive subalgebras of Lie algebras,? Bull. Amer. Math. Soc.,76, No. 2, 331?333 (1970). · Zbl 0194.05505 · doi:10.1090/S0002-9904-1970-12464-8
[330] H. Freudenthal, ?Lie groups in the foundations of geometry,? Adv. Math.,1, No. 2, 145?190 (1964). · Zbl 0125.10003 · doi:10.1016/0001-8708(65)90038-1
[331] H. Freudenthal, ?Zweifache Homogenität und Symmetrie,? Proc. Kon. Ned. Akad. Wetensch.,A70, No. 1, 18?22; Indag. Math.,A29, No. 1, 18?22 (1967).
[332] H. Freudenthal and H. de Vries, Linear Lie Groups, Academic Press, Inc., New York (1969), 547 pp. · Zbl 0377.22001
[333] H. Furstenberg, ?Poisson boundaries and envelopes of discrete groups,? Bull. Amer. Math. Soc.,73, No. 3, 350?356 (1967). · Zbl 0184.33105 · doi:10.1090/S0002-9904-1967-11748-8
[334] H. Furstenberg, ?Boundaries of Lie groups and discrete subgroups,? Actes Congr. Int. Mathématiciens, 1970, T. 2, Paris (1971), pp. 301?306.
[335] A. Galindo, ?Lie algebra extensions of the Poincaré algebra,? J. Math. Phys.,8, No. 4, 768?774 (1967). · Zbl 0199.28101 · doi:10.1063/1.1705274
[336] H. Garland, ?A rigidity theorem for discrete subgroups,? Trans. Amer. Math. Soc.,129, No. 1, 1?25 (1967). · Zbl 0225.22016 · doi:10.1090/S0002-9947-1967-0214102-1
[337] H. Garland and W. C. Hsiang, ?A square integrability criterion for the cohomology of arithmetic groups,? Proc. Nat. Acad. Sci. USA,59, No. 2, 354?360 (1968). · Zbl 0174.31302 · doi:10.1073/pnas.59.2.354
[338] H. Garland and M. S. Raghunathan, ?Fundamental domains for lattices in rank one semisimple Lie groups,? Proc. Nat. Acad. Sci. USA,62, No. 2, 309?313 (1969). · Zbl 0174.05603 · doi:10.1073/pnas.62.2.309
[339] H. Garland, ?Fundamental domains for lattices in (R)-rank 1 semisimple Lie groups,? Ann. Math.,92, No. 2, 279?326 (1970). · Zbl 0206.03603 · doi:10.2307/1970838
[340] D. A. Gay, ?On representations of the Weyl group,? Doct. Diss, Dartmouth College, Hanover, N. H. (1966), 98 pp; Diss. Abstrs.,B27, No. 3, 879 (1966).
[341] O. George and M. Levy-Nahas, ?Finite-dimensional representations of some non-semisimple Lie algebras,? J. Math. Phys.,7, No. 6, 980?988 (1966). · Zbl 0178.36203 · doi:10.1063/1.1705013
[342] Gh. Gheorghiev, ?Sur les groupes de Lie-Banach,? Rev. Roum. Math. Pures et Appl.,15, No. 10, 1611?1623 (1970). · Zbl 0221.22018
[343] R. Gilmore, ?Spin representations of the orthogonal groups,? J. Math. Phys.,11, No. 6, 1853?1854 (1970). · doi:10.1063/1.1665335
[344] S. G. Gindikin, I. I. Pyatetskii-Shapiro (Pjateckii-?apiro), and É. B. Vinberg, ?Homogeneous Kahler manifolds,? in: Geometry of Homogeneous Bounded Domains, Rome (1968), pp. 1?88.
[345] R. C. Glaeser, ?The centers of real simple Lie groups,? Doct. Diss. Univ. Pennsylvania, Philadelphia (1966), 52 pp; Diss. Abstrs.,B27, No. 10, 3595 (1967).
[346] M. Golubitsky and B. Rothschild, ?Primitive subalgebras of exceptional Lie algebras,? Pacif. J. Math.,39, No. 2, 371?393 (1971). · Zbl 0226.17005 · doi:10.2140/pjm.1971.39.371
[347] M. Golubitsky and B. Rothschild, ?Primitive subalgebras of exceptional Lie algebras,? Bull. Amer. Math. Soc.,77, No. 6, 983?986 (1971). · Zbl 0226.17005 · doi:10.1090/S0002-9904-1971-12827-6
[348] M. Goto, ?On an arcwise-connected subgroup of a Lie group,? Proc. Amer. Math. Soc.,20, No. 1, 157?162 (1969). · Zbl 0182.04602 · doi:10.1090/S0002-9939-1969-0233923-X
[349] M. Goto, ?A remark on a theorem of A. Weil,? Proc. Amer. Math. Soc.,20, No. 1, 163?165 (1969). · doi:10.1090/S0002-9939-1969-0232888-4
[350] M. Goto, ?Products of two one-parameter subgroups,? Proc. Amer. Math. Soc.,22, No. 2, 554 (1969). · Zbl 0195.04701
[351] M. Goto, ?Orbits of one-parameter groups. I. Plays in a Lie algebra,? J. Math. Soc. Jap.,22, No. 2, 113?122 (1970). · Zbl 0188.07004 · doi:10.2969/jmsj/02220113
[352] M. Goto, ?Orbits of one-parameter groups. II. Linear group case,? J. Math. Soc. Jap.,22, No. 2, 123?133 (1970). · Zbl 0188.07101 · doi:10.2969/jmsj/02220123
[353] M. Goto, ?Orbits of one-parameter groups. III. Lie group case,? J. Math. Soc. Jap.,23, No. 1, 95?102 (1971). · Zbl 0205.32802 · doi:10.2969/jmsj/02310095
[354] M. Goto and E. T. Kobayashi, ?On the subgroups of the centers of simply connected simple Lie groups. Classification of simple Lie groups in the large,? Osaka J. Math.,6, No. 2, 151?281 (1969). · Zbl 0225.22015
[355] P. J. Graham and L. A. Johnson, ?Sur une classe des variétés riemanniennes ou affines,? C. R. Acad. Sci. Paris,267, No. 2, A105-A107 (1968).
[356] A. Gray, ?Kähler submanifolds of homogeneous almost-Hermitian manifolds,? Tôhoku Math. J.,21, No. 2, 190?194 (1969). · Zbl 0194.22803 · doi:10.2748/tmj/1178242991
[357] B. I. Gross, ?Lie groups in the groups of formal power series,? Port. Math.,26, Nos. 1?2, 79?81 (1967). · Zbl 0203.03701
[358] F. Grosshans, ?Real orthogonal representations of algebraic groups,? Trans. Amer. Math. Soc.,160, 343?352 (1971). · Zbl 0239.20054 · doi:10.1090/S0002-9947-1971-0281807-7
[359] B. Gruber, ?Relations between ?Inner? and ?Outer? multiplicities for the classical groups,? Ann. Inst. H. Poincaré, Sect. A,8, No. 1, 43?51 (1968). · Zbl 0158.45803
[360] B. Gruber and H. J. Weber, ?On the construction of weight diagrams for SO (5), Sp(4) and G2,? Proc. Roy. Irish Acad.,A66, No. 3, 31?40 (1968). · Zbl 0258.20049
[361] B. Gruber and H. J. Weber, ?Recurrence relation for Kostant’s formula,? Proc. Roy. Irish Acad.,A70, No. 4, 27?32 (1970). · Zbl 0224.20039
[362] V. Guillemin, ?A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras,? J. Different. Geom.,2, No. 3, 313?345 (1968). · Zbl 0183.26102 · doi:10.4310/jdg/1214428443
[363] V. Guillemin, ?Infinite dimensional primitive Lie algebras,? J. Different. Geom.,4, No. 3, 257?282 (1970). · Zbl 0223.17007 · doi:10.4310/jdg/1214429503
[364] V. Guillemin, D. Quillen, and S. Sternberg, ?The integrability of characteristics,? Commun. Pure and Appl. Math.,23, No. 1, 39?77 (1970). · Zbl 0203.33002 · doi:10.1002/cpa.3160230103
[365] V. Guillemin and S. Sternberg, ?Remarks on a paper of Hermann,? Trans. Amer. Math. Soc.,130, No. 1, 110?116 (1968). · doi:10.1090/S0002-9947-1968-0217226-9
[366] Y. Guivarc’h ?Groupes de Lie à croissance polynomials,? C. R. Acad. Sci. Paris,271, No. 4, A237-A239 (1970).
[367] Y. Guivarc’h, ?Groupes de Lie à croissance polynomials,? C. R. Acad. Sci. Paris,272, No. 26, A1695?1696 (1971). · Zbl 0217.36904
[368] J. Hainzl, ?Verallgemeinerung des II-Theorems mit Hilfe spezeiller Koordinaten in Lieschen Transformationsgruppen,? Arch. Ration. Mech. and Anal.,30, No. 4, 321?344 (1968). · Zbl 0169.03904 · doi:10.1007/BF00281539
[369] G. G. Hall, Applied Group Theory, Longmans, London (1967), 128 pp. · Zbl 0166.29302
[370] G. Harder, Über einem Satz von E. Cartan,? Abh. Math. Semin. Univ. Hamburg,28, Nos. 3?4, 208?214 (1965). · Zbl 0158.03104 · doi:10.1007/BF02993250
[371] P. de la Harpe, ?Classification des L*-algèbras semi-simples reélles séparables,? C. R. Acad. Sci. Paris,272, No. 24, A1559-A1561 (1971). · Zbl 0215.48501
[372] P. de la Harpe, ?L*-algébre simples et algèbres de Lie classiques d’opérateurs dans l’espace hilbertien,? C. R. Acad. Sci. Paris,274, No. 14, A-1096?A1098 (1972). · Zbl 0229.22029
[373] P. de la Harpe and R. Ramer, ?Cohomologie scalaire des algébres de Lie classiques de type A d’opérateurs compacts,? C. R. Acad. Sci. Paris,273, No. 20, A882-A885 (1971). · Zbl 0222.22014
[374] P. de la Harpe and R. Ramer, ?Polynômes invariants sur les algèbres de Lie banachiques complexes classiques d’opérateurs compacts dans l’espace hilbertien,? C. R. Acad. Sci. Paris,274, No. 10, A824-A827 (1972). · Zbl 0225.22028
[375] B. Harris, ?The K-theory of a class of homogeneous spaces,? Trans. Amer. Math. Soc.,131, No. 2, 323?332 (1968).
[376] M. Hausner and J. T. Schwartz, Lie Groups; Lie Algebras, Gordon and Breach, New York (1968), 229 pp. · Zbl 0192.35902
[377] I. Hayashi, ?Embedding and existence theorems of infinite Lie algebra,? J. Math. Soc. Jap.,22, No. 1, 1?14 (1970). · Zbl 0182.36402 · doi:10.2969/jmsj/02210001
[378] G. C. Hegerfeldt, ?Branching theorem for the symplectic groups,? J. Math. Phys.,8, No. 6, 1195?1196 (1967). · Zbl 0189.32303 · doi:10.1063/1.1705335
[379] S. Helgason and K. Johnson, ?The bounded spherical functions on symmetric spaces,? Adv. Math.,3, No. 4, 586?593 (1963). · Zbl 0188.45405 · doi:10.1016/0001-8708(69)90010-3
[380] K.-H. Helwig, ?Jordan-Algebren und symmetrische Räume. I,? Math. Z.,115, No. 5, 315?349 (1970). · Zbl 0185.49701 · doi:10.1007/BF01131305
[381] M.-R. Herman, ?Simplicité du groupe de difféomorphismes de classe C?, isotopes á l’identité, du tore de dimension n,? C. R. Acad. Sci. Paris,273, No. 4, A232-A234 (1971). · Zbl 0217.49602
[382] R. Hermann, Lie Groups for Physicists, W. A. Benjamin, New York-Amsterdam (1966), 193 pp. · Zbl 0135.06901
[383] R. Hermann, ?Analytic continuation of group representations,? Commun. Math. Phys.,2, No. 4, 251?270 (1966). · Zbl 0139.41905 · doi:10.1007/BF01773356
[384] R. Hermann, ?Analytic continuation of group representations. II,? Commun. Math. Phys.,3, No. 1, 53?74 (1966). · doi:10.1007/BF01645461
[385] R. Hermann, ?Analytic continuation of group representations. III,? Commun. Math. Phys.,3, No. 2, 75?97 (1966). · Zbl 0139.41905 · doi:10.1007/BF01645447
[386] R. Hermann, ?Analytic continuation of group representations. IV,? Commun. Math. Phys.,5, No. 2, 131?156 (1967). · Zbl 0144.46105 · doi:10.1007/BF01646842
[387] R. Hermann, ?Analytic continuation of group representations. V,? Commun. Math. Phys.,5, No. 3, 157?190 (1967). · Zbl 0145.44405 · doi:10.1007/BF01646339
[388] R. Hermann, ?The formal linearization of a simple Lie algebra of vector fields about a singular point,? Trans. Amer. Math. Soc.,130, No. 1, 105?109 (1968). · Zbl 0155.05604 · doi:10.1090/S0002-9947-1968-0217225-7
[389] R. Hermann, ?Infinite dimensional Lie algebras and current algebra,? Lect. Notes Phys., No. 6, 312?337 (1970). · doi:10.1007/3-540-05310-7_32
[390] R. Hermann, ?Geodesies and classical mechanics on Lie groups,? J. Math. Phys.,13, No. 4, 460?464 (1972). · Zbl 0235.53026 · doi:10.1063/1.1666000
[391] U. Hirzerbruch, ?Über Jordan-Algebran und beschränkte symmetrische Gebiete,? Math. Z.,94, No. 5, 387?390 (1966). · Zbl 0161.03602 · doi:10.1007/BF01111668
[392] U. Hirzerbruch, ?Über eine Klasse von Lie-Algebren,? J. Algebra,11, No. 3, 461?467 (1969). · Zbl 0167.03201 · doi:10.1016/0021-8693(69)90067-2
[393] U. Hirzerbruch, ?Über eine Realisierung der hermiteschen, symmetrischen Räume,? Math. Z.,115, No. 5, 371?382 (1970). · Zbl 0188.08201 · doi:10.1007/BF01131310
[394] G. Hochschild, ?Complexification of real analytic groups,? Trans. Amer. Math. Soc.,125, No. 3, 406?413 (1966). · Zbl 0149.27603 · doi:10.1090/S0002-9947-1966-0206141-0
[395] G. Hochschild, La Structure des Groupes de Lie, Dunod, Paris (1968), 254 pp.
[396] G. Hochschild and G. D. Mostow, ?On the algebra of representative functions of an analytic group. II,? Amer. J. Math.,86, No. 4, 869?887 (1964). · Zbl 0152.01301 · doi:10.2307/2373160
[397] G. Hochschild and G. D. Mostow, ?Complex analytic groups and Hopf algebras,? Amer. J. Math.,91, No. 4, 1141?1151 (1969). · Zbl 0213.22701 · doi:10.2307/2373320
[398] L. Hodgkin, ?On the K-theory of Lie groups,? Topology,6, No. 1, 1?36 (1967). · Zbl 0186.57103 · doi:10.1016/0040-9383(67)90010-9
[399] D. F. Holland, ?Finite transformations and basis states of SU(n),? J. Math. Phys.,10, No. 10, 1903?1905 (1969). · doi:10.1063/1.1664779
[400] W. J. Holman III, ?Representation theory of SO (4, 1) and E (3, 1): an explicit spinor calculus,? J. Math. Phys.,10, No. 10, 1888?1896 (1969). · Zbl 0183.29002 · doi:10.1063/1.1664776
[401] R. Hotta, ?A remark on the Laplace-Beltrami operators attached to hermitian symmetric parts,? Osaka J. Math.,8, No. 1, 15?19 (1971). · Zbl 0222.53046
[402] Wu-Chung Hsiang, ?Differentiable actions of compact connected Lie group on R\=n,? Actes Congr. Int. Mathématiciens, 1970, T. 2, Paris (1971), pp. 73?77.
[403] Wu-Chung Hsiang and Wu-Yi Hsiang, ?Differentiable actions of compact connected classical groups. I,? Amer. J. Math.,89, No. 3, 505?786 (1967). · Zbl 0184.27204 · doi:10.2307/2373241
[404] Wu-Chung Hsiang, ?Some problems in differentiable transformation groups,? Proc. Conf. Transform. Groups, 1967, Springer-Verlag, Berlin-Heidelberg-New York (1968), pp. 223?234.
[405] Wu-Chung Hsiang and Wu-Yi Hsiang, ?Differentiable actions of compact connected classical groups. II,? Ann. Math.,92, No. 2, 189?223 (1970). · Zbl 0205.53902 · doi:10.2307/1970834
[406] Wu-Yi Hsiang, ?On the compact homogeneous minimal submanifolds,? Proc. Nat. Acad. Sci. USA,56, No. 1, 5?6 (1966). · Zbl 0178.55904 · doi:10.1073/pnas.56.1.5
[407] Wu-Yi Hsiang, ?On the principal orbit type and P. A. Smith theory of SU(p)-actions,? Topology,6, No. 1, 125?135 (1967). · Zbl 0166.19303 · doi:10.1016/0040-9383(67)90019-5
[408] Wu-Yi Hsiang, ?A survey on regularity theorems in differentiable compact transformation groups,? Proc. Conf. Transform. Groups, 1967, Springer-Verlag, Berlin-Heidelberg-New York (1968), pp. 77?124.
[409] T. Inoue, ?On isotropy algebras of a Lie algebra of vector fields which satisfies a certain convergence condition,? Osaka J. Math.,6, No. 1, 57?62 (1969). · Zbl 0189.22001
[410] M. Ise, ?Realization of irreducible bounded symmetric domain of type. V,? Proc. Jap. Acad.,45, No. 4, 233?237 (1969). · Zbl 0199.41201 · doi:10.3792/pja/1195520798
[411] M. Ise, ?Realization of irreducible bounded symmetric domain of type. VI,? Proc. Jap. Acad.,45, No. 10, 846?849 (1969). · Zbl 0199.41202 · doi:10.3792/pja/1195520545
[412] M. Ise, ?On canonical realizations of bounded symmetric domains as matrix-spaces,? Nagoya Math. J.,42, 115?133 (1971). · Zbl 0227.32009 · doi:10.1017/S002776300001429X
[413] N. Jacobson, Exceptional Lie Algebras, (Lect. Notes Pure and Appl. Math., No. 1), Marcel Dekker, New York (1971), 125 pp. · Zbl 0215.38701
[414] I. M. James, ?On the homotopy theory of the classical groups,? An. Acad. Brasil Ciênc.,39, No. 1, 39?44 (1967).
[415] K. Jänich, ?On the classification of regular O (n)-manifolds in terms of their orbit bundles,? Proc. Conf. Transform. Groups, 1967, Springer-Verlag, Berlin-Heidelberg-New York (1968), pp. 135?142.
[416] P. Jasselette, ?Sur les coefficients de Clebsch-Gordan du groupe SU (3),? Bull. Soc. Roy. Sci. Liège,36, Nos. 11?12, 654?658 (1967).
[417] G. R. Jensen, ?Homogeneous Einstein spaces of dimension four,? J. Different. Geom.,3, No. 3, 309?349 (1969). · Zbl 0194.53203 · doi:10.4310/jdg/1214429056
[418] G. R. Jensen, ?The scalar curvature of left-invariant Riemannian metrics,? Indiana Univ. Math. J.,20, No. 12, 1125?1144 (1971). · doi:10.1512/iumj.1971.20.20104
[419] H. Kachi, ?On the homotopy groups of rotation groups Rn,? J. Fac. Sci. Shinshu Univ.,3, No. 1, 13?33 (1968). · Zbl 0323.57026
[420] S. Kaneyuki, Homogeneous Bounded Domains and Siegel Domains, Lecture Notes in Mathematics, Vol. 241, Springer-Verlag, New York-Berlin-Heidelberg (1971), 89 pp. · Zbl 0241.32011
[421] S. Kaneyuki and M. Sudo, ?On Silov boundaries of Siegel domains,? J. Fac. Sci., Univ. Tokyo, Sec. 1,15, No. 2, 131?146 (1968). · Zbl 0172.10503
[422] T. Kato and K. Motomiya, ?A study on certain homogeneous spaces,? Tôhoku Math. J.,21, No. 1, 1?20 (1969). · Zbl 0188.54203 · doi:10.2748/tmj/1178243030
[423] N. Kemmer, D. L. Pursey, and S. A. Williams, ?Irreducible representations of the five-dimensional rotation group,? J. Math. Phys.,9, No. 8, 1224?1230 (1968). · Zbl 0189.55102 · doi:10.1063/1.1664703
[424] R. C. King, ?The dimensions of irreducible tensor representations of the orthogonal and symplectic groups,? Can. J. Math.,23, No. 1, 176?188 (1971). · Zbl 0217.07902 · doi:10.4153/CJM-1971-017-2
[425] A. U. Klimyk, ?Decomposition of representations with highest weight of semisimple Lie algebra into representations of regular subalgebra,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,46, No. 2, 144?148 (1969). · Zbl 0196.06202
[426] W. H. Klink and G. J. Smith, ?On the reduction of n-fold tensor product representations of noncompact groups,? Commun. Math. Phys.,10, No. 3, 231?244 (1968). · Zbl 0177.28403 · doi:10.1007/BF01654233
[427] M. A. Knus, ?On the enveloping algebra and the descending central series of a Lie algebra,? J. Algebra,12, No. 3, 335?338 (1969). · Zbl 0177.05601 · doi:10.1016/0021-8693(69)90034-9
[428] S. Kobayashi and T. Nagano, ?On filtered Lie algebras and geometric structures. III,? J. Math. and Mech.,14, No. 4, 679?706 (1965). · Zbl 0142.19504
[429] R. M. Koch, ?Pseudogroups associated with the one-dimensional foliation group,? J. Math. Soc. Jap.,23, No. 1, 149?180 (1971). · Zbl 0209.06103 · doi:10.2969/jmsj/02310149
[430] R. M. Koch, ?Pseudogroups associated with the one-dimensional foliation group. II,? J. Math. Soc. Jap.,23, No. 2, 181?212 (1971). · Zbl 0209.06201 · doi:10.2969/jmsj/02320181
[431] M. Koecher, ?Imbedding of Jordan algebras into Lie algebras. I,? Amer. J. Math.,89, No. 3, 787?816 (1967). · Zbl 0209.06801 · doi:10.2307/2373242
[432] M. Koecher, ?Gruppen und Lie-Algebren von rationalen Funktionen,? Math. Z.,109, No. 5, 349?392 (1969). · Zbl 0181.04503 · doi:10.1007/BF01110558
[433] M. Koecher, ?On bounded symmetric domains,? Rice Univ. Stud.,56, No. 2, 63?65 (1970). · Zbl 0217.10902
[434] B. Kostant and S. Rallis, ?On orbits associated with symmetric spaces,? Bull. Amer. Math. Soc.,75, No. 4, 879?883 (1969). · Zbl 0223.53049 · doi:10.1090/S0002-9904-1969-12337-2
[435] B. Kostant and S. Rallis, ?On representations associated with symmetric spaces,? Bull. Amer. Math. Soc.,75, No. 4, 884?888 (1969). · Zbl 0223.53050 · doi:10.1090/S0002-9904-1969-12339-6
[436] B. Kostant and S. Rallis, ?Orbits and representations associated with symmetric spaces,? Amer. J. Math.,93, No. 3, 753?809 (1971). · Zbl 0224.22013 · doi:10.2307/2373470
[437] J.-L. Koszul, ?Formes harmoniques vectorielles sur les espaces localement symétriques,? in: Geometry of Homogeneous Bounded Domains, Rome (1968), pp. 197?260. · Zbl 0183.50903
[438] J.-L. Koszul, ?Trajectoires convexes de groupes affines unimodulaires,? in: Essays on Topology and Related Topics, Springer-Verlag, Berlin-Heidelberg-New York (1970), pp. 105?110. · Zbl 0213.36002
[439] M. Krämer, ?Über, das Verhalten endlicher Üntergruppen bei Darstellungen kompakter Liegruppen,? Invent. Math.,16, Nos. 1?2, 15?39 (1972). · Zbl 0229.22023 · doi:10.1007/BF01391212
[440] G. V. Krishnarao, ?Unstable homotopy of O(n),? Trans. Amer. Math. Soc.,127, No. 1, 90?97 (1967). · Zbl 0149.20203
[441] Hsu-Tung Ku and Mei-Chin Ku, ?A simple proof of the maximal tori theorem of E. Cartan,? Proc. Conf. Transform. Groups, New Orleans, 1967, Springer-Verlag, Berlin-Heidelberg-New York (1968), pp. 346?348. · Zbl 0305.57032
[442] M. Kupczýnski, ?On the generalized Saletan contractions,? Commun. Math. Phys.,13, No. 2, 154?162 (1969). · Zbl 0179.58401 · doi:10.1007/BF01649874
[443] R. G. Laha, ?Spherical functions on compact riemannian symmetric spaces,? Stud. Sci. Math. Hung.,6, Nos. 1?2, 63?65 (1971).
[444] M. Lazard and J. Tits, ?Domains d’injectivité de l’application exponentielle,? Topology,4, No. 4, 315?322 (1966). · Zbl 0156.03203 · doi:10.1016/0040-9383(66)90030-9
[445] A. J. Ledger, ?Espaces de Riemann symétriques généralises,? C. R. Acad. Sci. Paris,264, No. 22, A947-A948 (1967). · Zbl 0147.40601
[446] Dong Hoon Lee, ?On fixed points of a compact automorphism group,? Mich. Math. J.,17, No. 2, 175?178 (1970). · Zbl 0219.22013 · doi:10.1307/mmj/1029000428
[447] Dong Hoon Lee, ?The adjoint group of Lie groups,? Pacif. J. Math.,32, No. 1, 181?186 (1970). · Zbl 0194.05503 · doi:10.2140/pjm.1970.32.181
[448] P. Le Maire, ?Sur le groupe SO(3, 2) comme groupe de symétrie de l’espace temps,? C. R. Acad. Sci. Paris,270, No. 1, A80-A81 (1970).
[449] J. Lepowsky, ?Multiplicity formulas for certain semisimple Lie groups,? Bull. Amer. Math. Soc.,77, No. 4, 601?605 (1971). · Zbl 0228.17003 · doi:10.1090/S0002-9904-1971-12767-2
[450] J. A. Leslie, ?On a differential structure for the group of diffeomorphisms,? Topology,6, No. 2, 263?271 (1967). · Zbl 0147.23601 · doi:10.1016/0040-9383(67)90038-9
[451] J. A. Leslie, ?Two classes of classical subgroups of Diff (M),? J. Different. Geom.,5, Nos. 3?4, 427?435 (1971). · Zbl 0228.58005 · doi:10.4310/jdg/1214430005
[452] J. M. Lévy-Leblond, ?La théorie des groupes d’invariance et les fondements de la mécanique classique,? Rend. Semin. Mat. Univ. e Politecn. Torino,28, 77?79 (1968?1969).
[453] M. Levy-Nahas, ?Deformation and contraction of Lie algebras,? J. Math. Phys.,8, No. 6, 1211?1222 (1967). · Zbl 0175.24803 · doi:10.1063/1.1705338
[454] M. Levy-Nahas, ?Déformations du groupe de Poincaré,? Colloq. Int. Centre Nat. Rech. Sci., No. 159, 25?45 (1968).
[455] M. Levy-Nahas, ?Two simple applications of the deformation of Lie algebras,? Ann. Inst. H. Poincaré,A13, No. 3, 221?227 (1970). · Zbl 0204.36101
[456] M. Levy-Nahas and R. Seneor, ?First order deformations of Lie algebra representations. E (3) and Poincaré examples,? Commun. Math. Phys.,9, No. 3, 242?266 (1968). · Zbl 0161.46003 · doi:10.1007/BF01645689
[457] K. J. Lezuo, ?Weyl coefficients in SU (3),? J. Math. Phys.,8, No. 5, 1163?1170 (1967). · Zbl 0171.23903 · doi:10.1063/1.1705330
[458] A. Lichnerowicz, ?Sur les idéaux de l’algèbre de Lie des automorphismes d’une variété symplectique,? C. R. Acad. Sci. Paris,274, No. 21, A1494-A1498 (1972). · Zbl 0244.22017
[459] Gen-dao Li, ?On Weyl groups of real semisimple Lie algebras and their application to the classification of maximal solvable subalgebras with respect to inner conjugation,? Chinese Math.,8, No. 1, 74?89 (1966), (See [114] above.)
[460] O. Loos, ?Spiegelungsräume und homogene symmetrische Räume,? Math. Z.,99, No. 2, 141?170 (1967). · Zbl 0148.17403 · doi:10.1007/BF01123745
[461] O. Loos, ?Reflexion spaces of minimal and maximal torsion,? Math. Z.,106, No. 1, 67?72 (1968). · Zbl 0165.24902 · doi:10.1007/BF01137973
[462] O. Loos, Symmetric Spaces, Vols. 1, 2, Benjamin, New York (1969), Vol. 1, 198 pp; Vol. 2, 183 pp. · Zbl 0149.41004
[463] O. Loos, ?Jordan triple systems, R-spaces, and bounded symmetric domains,? Bull. Amer. Math. Soc.,77, No. 4, 558?561 (1971). · Zbl 0228.32012 · doi:10.1090/S0002-9904-1971-12753-2
[464] O. Loos, ?Kompakte Unterräume symmetrischer Räume,? Math. Z.,125, No. 3, 264?270 (1972). · Zbl 0228.53034 · doi:10.1007/BF01111308
[465] F. Lowenthal, ?Transitive subsemigroups of the Moebius group,? J. Math. and Mech.,18, No. 2, 173?189 (1968). · Zbl 0162.10601
[466] F. Lowenthal, ?On subsemigroups of the projective group on the line,? Can. J. Math.,20, No. 4, 1001?1011 (1968). · Zbl 0164.02501 · doi:10.4153/CJM-1968-097-7
[467] F. Lowenthal, ?On generating subgroups of the Moebius group by pairs of infinitesimal transformations,? Pacif. J. Math.,26, No. 1, 141?147 (1968). · Zbl 0174.05602 · doi:10.2140/pjm.1968.26.141
[468] D. Luna, ?Sur l’intersection générique de deux sous-algèbres d’une algèbre de Lie,? Thèse Doct. Math. Pures Fac. Sci. Univ. Grenoble, Grenoble (1970), 44 pp.
[469] A. T. Lundell, ?Homotopy periodicity of the classical Lie groups,? Proc. Amer. Math. Soc.,18, No. 4, 683?690 (1967). · Zbl 0153.25301 · doi:10.1090/S0002-9939-1967-0225344-9
[470] I. G. Macdonald, ?Affine root systems and Dedekind’s?-function,? Invent. Math.,15, No. 2, 91?143 (1972). (See [126] above.) · Zbl 0244.17005 · doi:10.1007/BF01418931
[471] A. Maduemezia, ?Singular surfaces of n-dimensional Lie algebras under generalized Inönü-Wigner contraction,? Preprint No. 53, Internat. Centre Theor. Phys. Int. Atom. Energy Agency (1968), 15 pp.
[472] R. A. A. Martins, ?Théorème de réalisation pour les algèbres de Lie filtrées transitives,? C. R. Acad. Sci. Paris,270, No. 3, A192-A194 (1970).
[473] Sh. Maruyama, ?On orispherical subgroups of a semisimple Lie group,? Kodai Math. Semin. Repts.,20, No. 1, 12?17 (1968). · Zbl 0164.02901 · doi:10.2996/kmj/1138845592
[474] Sh. Maruyama, ?Conjugate classes of orispherical subalgebras in real semisimple Lie algebras,? Kodai Math. Semin. Repts.,20, No. 1, 18?28 (1968). · Zbl 0155.07001 · doi:10.2996/kmj/1138845593
[475] I. Matei, ?Classificarea grupurilor lui Lie reale neintegrabile cu cinci parametri,? Stud. Si Cerc. Mat. Acad. RSR,20, No. 2, 223?235 (1968).
[476] I. Matei, ?Asupra spatiilor A3 omogene cu grup Gp (p?7),? Stud. Si Cerc. Mat. Acad. RSR,21, No. 1, 101?109 (1969).
[477] M. Matsuda, ?A note on the defining equation of a transitive Lie group,? Osaka J. Math.,8, No. 1, 19?32 (1971). · Zbl 0221.58015
[478] H. Matsumoto, ?Quelques remarques sur les espaces riemanniens isotropes,? C. R. Acad. Sci. Paris,274, No. 4, A316-A319 (1972). · Zbl 0205.52202
[479] H. Matsumoto, ?Sur un théorème de point fixe de E. Cartan,? C. R. Acad. Sci. Paris,274, No. 12, A955-A958 (1972). · Zbl 0244.54028
[480] Y. Matsushima, ?A formula for the Betti numbers of compact locally symmetric Riemannian manifolds,? J. Different. Geom.,1, No. 2, 99?109 (1967). · Zbl 0164.22101 · doi:10.4310/jdg/1214427883
[481] Y. Matsushima and S. Murakami, ?On certain cohomology groups attached to hermitian symmetric spaces. II,? Osaka J. Math.,5, No. 2, 223?241 (1968). · Zbl 0183.26103
[482] J. McConnell, ?Properties of the exceptional G2-Lie group,? Proc. Roy. Irish Acad.,A66, No. 6, 79?92 (1968).
[483] J. McConnell, ?The general linear group GL(4) and the Lie group C2,? Proc. Roy. Irish Acad.,A68, No. 2, 5?32 (1969). · Zbl 0165.04105
[484] J. McConnell, ?Graph theory of weight multiplicities,? Proc. Roy. Irish Acad.,A69, No. 5, 63?75 (1970). · Zbl 0181.03802
[485] M. L. Mehta and P. K. Srivastava, ?Irreducible corepresentations of groups having a compact simple Lie group as a subgroup of index 2,? J. Math. Phys.,9, No. 9, 1375?1385 (1968). · Zbl 0164.34204 · doi:10.1063/1.1664725
[486] K. Meyberg, ?Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren,? Math. Z.,115, No. 1, 58?78 (1970). · Zbl 0186.34501 · doi:10.1007/BF01109749
[487] L. Michel, ?Introduction au colloque sur le groupe de Poincaré,? Colloq. Int. Centre Nat. Rech. Sci., No. 159, 13?14 (1968).
[488] L. Michel, ?Points critiques des fonctions invariants sur une G-variété,? C. R. Acad. Sci. Paris,272, No. 6, A433-A436 (1971). · Zbl 0205.53801
[489] B. Mielnik and J. Pleba?ski, ?Combinatorial approach to Baker-Campbell-Hausdorff exponents,? Ann. Inst. H. Poincaré,A12, No. 3, 215?254 (1970). · Zbl 0206.13602
[490] W. J. Miller, ?A branching law for the symplectic groups,? Pacif. J. Math.,16, No. 2, 341?346 (1966). · Zbl 0139.02102 · doi:10.2140/pjm.1966.16.341
[491] W. Miller, Jr., Lie Theory and Special Functions, Academic Press, New York (1968), 338 pp.
[492] F. Mimura, ?Contraction of Lie algebra of the motion group of three dimensional Euclidean space,? Bull. Kyushu Inst. Technol. (Math. Natur. Sci.), No. 18, 17?35 (1971). · Zbl 0218.22018
[493] M. Mimura, ?The homotopy groups of Lie groups of low rank,? J. Math. Kyoto Univ.,6, No. 2, 131?176 (1967). · Zbl 0171.44101 · doi:10.1215/kjm/1250524375
[494] M. Mimura and H. Toda, ?Cohomology operations and the homotopy of compact Lie groups. I,? Topology,9, No. 4, 317?336 (1970). · Zbl 0204.23803 · doi:10.1016/0040-9383(70)90056-X
[495] R. Mirman, ?Number of polynomial invariants of adjoint and fundamental compact inhomogeneous unitary algebras,? J. Math. Phys.,9, No. 1, 47?49 (1968). · Zbl 0165.58402 · doi:10.1063/1.1664475
[496] R. Mirman, ?Invariants and scalars of compact inhomogeneous unitary algebras,? J. Math. Phys.,9, No. 1, 39?46 (1968). · Zbl 0165.58401 · doi:10.1063/1.1664474
[497] D. Montgomery, ?Compact groups of transformations,? in: Differential Analysis, Oxford Univ. Press, London (1964), pp. 43?56.
[498] D. Montgomery and C. T. Yang, ?Differentiable pseudo-free circle actions,? Proc. Nat. Acad. Sci. USA,68, No. 5, 894?896 (1971). · Zbl 0221.57022 · doi:10.1073/pnas.68.5.894
[499] R. V. Moody, ?Lie algebras associated with generalized Cartan matrices,? Bull. Amer. Math. Soc.,73, No. 2, 217?221 (1967). · Zbl 0154.27303 · doi:10.1090/S0002-9904-1967-11688-4
[500] R. V. Moody, ?A new class of Lie algebras,? J. Algebra,10, No. 2, 211?230 (1968). · Zbl 0191.03005 · doi:10.1016/0021-8693(68)90096-3
[501] R. V. Moody, ?Euclidean Lie algebras,? Can. J. Math.,21, No. 6, 1432?1454 (1969). · Zbl 0194.34402 · doi:10.4153/CJM-1969-158-2
[502] R. V. Moody, ?Simple quotients of Euclidean Lie algebras,? Can. J. Math.,22, No. 4, 839?846 (1970). · Zbl 0219.17007 · doi:10.4153/CJM-1970-095-3
[503] A. Morimoto, ?On the classification of noncompact complea abelian Lie groups,? Trans. Amer. Math. Soc.,123, No. 1, 200?228 (1966). · doi:10.1090/S0002-9947-1966-0207893-6
[504] M. Moskowitz, ?A note on automorphisms of Lie algebras,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. e Natur.,51, Nos. 1?2, 1?4 (1971). · Zbl 0236.17005
[505] G. D. Mostow, ?On the rigidity of hyperbolic space forms under quasiconformal mappings,? Proc. Nat. Acad. Sci. USA,57, No. 2, 211?215 (1967). · Zbl 0189.09401 · doi:10.1073/pnas.57.2.211
[506] G. D. Mostow, ?Representative functions on discrete groups and solvable arithmetic subgroups,? Amer. J. Math.,92, No. 1, 1?32 (1970). · Zbl 0205.04406 · doi:10.2307/2373495
[507] G. D. Mostow, ?Intersections of discrete subgroups with Cartan subgroups,? J. Indian Math. Soc.,34, Nos. 3?4, 203?214 (1970). · Zbl 0235.22019
[508] G. D. Mostow, ?Some applications of representative functions to solvmanifolds,? Amer. J. Math.,93, No. 1, 11?32 (1971). · Zbl 0228.22015 · doi:10.2307/2373444
[509] G. D. Mostow, ?The rigidity of locally symmetric spaces,? Actes Congr. Int. Mathématiciens, 1970, T. 2, Paris (1971), pp. 187?197.
[510] N. Mukunda, ?Realizations of Lie algebras in classical mechanics,? J. Math. Phys.,8, No. 5, 1069?1072 (1967). · Zbl 0171.23801 · doi:10.1063/1.1705318
[511] D. Mumford, ?A remark on Mahler’s compactness theorem,? Proc Amer. Math. Soc.,28, No. 1, 289?294 (1971). · Zbl 0215.23202
[512] U. Mutze, ?On the Casimir operators associated with any Lie algebra,? Z. Phys.,229, Nos. 3?5, 224?229 (1969). · Zbl 0183.29001 · doi:10.1007/BF01396249
[513] T. Nagano, ?Linear differential systems with singularities and an application to transitive Lie algebras,? J. Math. Soc. Jap.,18, No. 4, 398?404 (1966). · Zbl 0147.23502 · doi:10.2969/jmsj/01840398
[514] J. G. Nagel, ?Expansions of inhomogenizations of all the classical Lie algebras to classical Lie algebras,? Ann. Inst. H. Poincaré,A13, No. 1, 1?26 (1970). · Zbl 0203.57201
[515] S. Natarajan and K. Viswanath, ?Quaternionic representations of compact metric groups,? J. Math. Phys.,8, No. 3, 582?589 (1967). · Zbl 0171.29004 · doi:10.1063/1.1705236
[516] W. D. Neumann, ?3-dimensional G-manifolds with 2-dimensional orbits,? Proc. Conf. Transform. Groups, 1967, Springer-Verlag, Berlin-Heidelberg-New York (1968), pp. 220?222.
[517] Ngo van Quê, ?On the classification of Lie pseudo-algebras,? Can. J. Math.,22, No. 5, 905?915 (1970). · Zbl 0219.58010 · doi:10.4153/CJM-1970-104-9
[518] B. M. Nguiffo, ?Algèbres à associateur symétrique et algèbres de Lie réductives,? Thése Doct. Fac. Sci. Univ. Grenoble, Grenoble (1968), 40 pp.
[519] Nguyen-van Hai, ?Construction de l’algèbre de Lie des transformations infinitésimales affines sur un espace homogène à connexion linéaire invariante,? C. R. Acad. Sci. Paris,263, No. 23, A876-A879 (1966). · Zbl 0143.44603
[520] A. Nijenhuis and R. W. Richardson, Jr., ?Cohomology and deformations in graded Lie algebras,? Bull. Amer. Math. Soc.,72, No. 1, Part 1, 1?29 (1966). · Zbl 0136.30502 · doi:10.1090/S0002-9904-1966-11401-5
[521] A. Nijerihuis and R. W. Richardson, Jr., ?Deformations of homomorphisms of Lie groups and Lie algebras,? Bull. Amer. Math. Soc.,73, No. 1, 175?179 (1967). · Zbl 0153.04402 · doi:10.1090/S0002-9904-1967-11703-8
[522] A. Nijenhuis and R. W. Richardson, Jr., ?Deformations of Lie algebra structures,? J. Math. and Mech.,17, No. 1, 89?105 (1967). · Zbl 0166.30202
[523] T. Nôno, ?On the symmetry groups of simple materials: an application of the theory of Lie groups,? J. Math. Anal. and Appl.,24, No. 1, 110?135 (1968). · Zbl 0172.26603 · doi:10.1016/0022-247X(68)90051-6
[524] T. Nôno, ?A classification of neutral technical changes. II. An application of Lie theory,? Bull. Fukuoka Univ. Educ. Nat. Sci.,21, 43?56 (1971).
[525] T. Ochiai, ?Transformation groups on Riemannian symmetric spaces,? J. Different. Geom.,3, No. 2, 231?236 (1969). · Zbl 0187.19203 · doi:10.4310/jdg/1214428827
[526] T. Ochiai, ?Geometry associated with semisimple flat homogeneous spaces,? Trans. Amer. Math. Soc.,152, No. 1, 159?193 (1970). · Zbl 0205.26004 · doi:10.1090/S0002-9947-1970-0284936-6
[527] K. Oguchi, ?Homotopy groups of Sp (n)/Sp (n?2),? J. Fac. Sci. Univ. Tokyo, Sec. 1,16, No. 2, 179?201 (1969). · Zbl 0191.53803
[528] H. Omori, ?A study of transformation groups on manifolds,? J. Math. Soc. Jap.,19, No. 1, 32?45 (1967). · Zbl 0147.41903 · doi:10.2969/jmsj/01910032
[529] H. Omori and P. de la Harpe, ?Opération de groupe de Lie banachiques sur les variétés differentielles de dimension finie,? C. R. Acad. Sci. Paris,273, No. 9, A395-A397 (1971). · Zbl 0218.58003
[530] P. Orlik and F. Raymond, ?Actions of the torus on 4-manifolds. I,? Trans. Amer. Math. Soc.,152, No. 2, 531?559 (1970). · Zbl 0216.20202
[531] H. Ozeki and M. Wakimoto, ?On polarizations of certain homogeneous spaces,? Proc. Jap. Acad.,48, No. 1, 1?4 (1972). · Zbl 0244.22013 · doi:10.3792/pja/1195519800
[532] S. S. Page, ?A characterisation of rigid algebras,? J. London Math. Soc.,2, No. 2, 237?240 (1970). · Zbl 0195.32502 · doi:10.1112/jlms/s2-2.2.237
[533] S. S. Page and R. W. Richardson, Jr., ?Stable subalgebras of Lie algebras and associative algebras,? Trans. Amer. Math. Soc.,127, No. 2, 302?312 (1967). · Zbl 0163.03003 · doi:10.1090/S0002-9947-1967-0206065-X
[534] R. S. Palais ?C1-actions of compact Lie groups on compact manifolds are C1-equivalent to C?-actions,? Amer. J. Math.,92, No. 3, 748?760 (1970). · Zbl 0203.26203 · doi:10.2307/2373371
[535] S. Ch. Pang and K. T. Hecht, ?Lowering and raising operators for the orthogonal group in the chainO(n)?O(n?1)..., and their graphs,? J. Math. Phys.,8, No. 6, 1233?1251 (1967). · Zbl 0163.22803 · doi:10.1063/1.1705340
[536] M. Parker, ?Classes d’espaces pseudo-riemanniends symétriques de signature (2,n),? C. R. Acad. Sci. Paris,272, No. 13, A882-A884 (1971). · Zbl 0216.18702
[537] J. S. Pasternack, ?Foliations and compact Lie group actions,? Comment. Math. Helv.,46, No. 4, 467?477 (1971). · Zbl 0228.57020 · doi:10.1007/BF02566859
[538] M. Pauri and G. M. Prosperi, ?Canonical realizations of the rotation group,? J. Math. Phys.,8, No. 11, 2256?2267 (1967). · Zbl 0167.23105 · doi:10.1063/1.1705151
[539] M. Pauri and G. M. Prosperi, ?Canonical realizations of Lie symmetry groups,? J. Math. Phys.,7, No. 2, 366?375 (1966). · Zbl 0151.34303 · doi:10.1063/1.1704941
[540] M. Pease, ?Application of Lie algebraic theory to microwave networks,? in: Advances in Microwaves, Vol. 1, Academic Press, New York-London (1966), pp. 285?317.
[541] W. Pejas, Ein Beweis der qualitativen Aussage der Campbell-Hausdorff-Formel für analytische Gruppen,? Arch. Math.,19, No. 5, 453?456 (1968). · Zbl 0169.34704 · doi:10.1007/BF01898764
[542] H. V. Pittie, ?Homogeneous vector bundles on homogeneous spaces,? Topology,11, No. 2, 199?203 (1972). · Zbl 0229.57017 · doi:10.1016/0040-9383(72)90007-9
[543] R. D. Pollack, ?Introduction to Lie algebras,? Queen’s Pap. Pure and Appl. Math., No. 23, 1?264 (1969).
[544] J. Pradines, ?Théorie de Lie pour les groupoides différentiables. Relations entre propriétés locales et globales,? C. R. Acad. Sci. Paris,263, No. 25, A907-A910 (1966). · Zbl 0147.41102
[545] J. Pradines, ?Théorie de Lie pour les groupoides différentiables. Calcul différentiel dans la catégorie des groupoides infinitésimaux,? C. R. Acad. Sci. Paris,264, No. 5, A245-A248 (1967). · Zbl 0154.21704
[546] J. Pradines, ?Géometrie différentielle audessus d’un groupoide,? C. R. Acad. Sci. Paris,266, No. 25, A1194-A1196 (1968). · Zbl 0172.03601
[547] J. Pradines, ?Troisième théorème de Lie pour les groupoides différentiables,? C. R. Acad. Sci. Paris,267, No. 1, A21-A23 (1968). · Zbl 0172.03502
[548] D. Radhakrishnan, ?On the Clebsch-Gordan series of a semisimple Lie algebra,? J. Math. Phys.,9, No. 12, 2061?2063 (1968). · Zbl 0181.32304 · doi:10.1063/1.1664545
[549] D. Radharkrishnan,?Internal multiplicity structure for the chainsc(n)?sc(n?1)?...?sc(2),? J. Math. Phys.,10, No. 12, 2129?2131 (1969). · Zbl 0184.54603 · doi:10.1063/1.1664812
[550] D. Radhakrishnan and T. S. Santhanam, ?Internal multiplicity structure and Clebsch-Gordan series for the exceptional group G(2),? J. Math. Phys.,8, No. 11, 2206?2207 (1967). · Zbl 0172.03604 · doi:10.1063/1.1705142
[551] M. S. Raghunathan, ?Vanishing theorems for cohomology groups associated to discrete subgroups of semisimple Lie groups,? Osaka J. Math.,3, No. 2, 243?256 (1966). · Zbl 0145.43702
[552] M. S. Raghunathan, ?Cohomology of arithmetic subgroups of algebraic groups. I,? Ann. Math.,86, No. 3, 409?424 (1967). · Zbl 0157.06802 · doi:10.2307/1970607
[553] M. S. Raghunathan, ?A note on quotients of real algebraic groups by arithmetic subgroups,? Invent. Math.,4, No. 5, 318?335 (1968). · Zbl 0218.22015 · doi:10.1007/BF01425317
[554] M. S. Raghunathan, ?Cohomology of arithmetic subgroups of algebraic groups. II,? Ann. Math.,87, No. 2, 279?304 (1968). · Zbl 0157.06803 · doi:10.2307/1970585
[555] M. S. Raghunathan, ?Lattices in semisimple Lie groups,? Actes Congr. Int. Mathématiciens, 1970, T. 2, Paris (1971), pp. 337?341.
[556] M. S. Raghunathan, Discrete Subgroups of Lie Groups, (Ergeb. Math., 68), Springer-Verlag, Berlin-Heidelberg-New York (1972), 227 pp. · Zbl 0254.22005
[557] K. G. Ramanathan, ?Discontinuous groups. II,? Nachr. Akad. Wiss. Göttingen, II, Math.-Phys. Kl., No. 3, 145?164 (1964).
[558] S. Ramanujam, ?An application of Morse theory to certain symmetric spaces,? J. Indian Math. Soc.,32, Nos. 3?4, 243?275 [1968(1969)]. · Zbl 0187.43304
[559] S. Ramanujam, ?Application of Morse theory to some homogeneous spaces,? Tôhoku Math. J.,21, No. 3, 343?353 (1969). · Zbl 0187.43305 · doi:10.2748/tmj/1178242947
[560] S. Ramanujam, ?Morse theory of certain symmetric spaces,? J. Different. Geom.,3, No. 2, 213?229 (1969). · Zbl 0196.25006 · doi:10.4310/jdg/1214428826
[561] S. Ramanujam, ?Topology of classical groups,? Osaka J. Math.,6, No. 2, 243?249 (1969). · Zbl 0198.34904
[562] A. Ran, ?Two-parameter groups of formal power series,? Trans. Amer. Math. Soc.,146, 349?368 (1969). · doi:10.1090/S0002-9947-1969-0252670-6
[563] A. Ran, ?Embedding theorems for two-parameter groups of formal power series and related problems,? Isr. J. Math.,9, No. 1, 73?92 (1971). · Zbl 0206.35802 · doi:10.1007/BF02771621
[564] G. Rauch, ?Remarque sur les constantes de structure des C-algèbres de Lie de dimension finie,? C. R. Acad. Sci. Paris,266, No. 6, A330-A332 (1968). · Zbl 0157.07603
[565] G. Rauch, ?Variation d’algèbres de Lie résolubles,? C. R. Acad. Sci. Paris,269, No. 16, A685-A687 (1969). · Zbl 0185.08603
[566] G. Rauch, ?Sur les variations du groupe de Poincaré,? J. Math. Pures et Appl.,50, No. 4, 351?362 (1971).
[567] B. E. Reed, ?Representations of solvable Lie algebras,? Mich. Math. J.,16, No. 3, 227?233 (1969). · Zbl 0204.36002 · doi:10.1307/mmj/1029000266
[568] R. W. Richardson, Jr., ?On the rigidity of semi-direct products of Lie algebras,? Pacif. J. Math.,22, No. 2, 339?344 (1967). · Zbl 0166.30301 · doi:10.2140/pjm.1967.22.339
[569] R. W. Richardson, Jr., ?A rigidity theorem for subalgebras of Lie and associative algebras,? Ill. J. Math.,11, No. 1, 92?110 (1967).
[570] R. W. Richardson, Jr., ?Conjugacy classes in Lie algebras and algebraic groups,? Ann. Math.,86, No. 1, 1?15 (1967). · Zbl 0153.04501 · doi:10.2307/1970359
[571] R. W. Richardson, Jr., ?On the variation of isotropy subalgebras,? Proc. Conf. Transform. Groups, New Orleans, 1967, Springer-Verlag, Berlin-Heidelberg-New York (1968), pp. 429?440.
[572] R. W. Richardson, Jr., ?Compact real forms of a complex semi-simple Lie algebra,? J. Different. Geom.,2, No. 4, 411?419 (1968). · Zbl 0298.17002 · doi:10.4310/jdg/1214428657
[573] R. W. Richardson, Jr., ?Deformations of Lie subgroups,? Bull. Amer. Math. Soc.,77, No. 1, 92?96 (1971). · Zbl 0227.22012 · doi:10.1090/S0002-9904-1971-12615-0
[574] R. W. Richardson, Jr., ?Principal orbit types for algebraic transformation spaces in characteristic zero,? Invent. Math.,16, Nos. 1?2, 6?16 (1972). · Zbl 0242.14010 · doi:10.1007/BF01391211
[575] D. S. Rim, ?Deformation of transitive Lie algebras,? Ann. Math.,83, No. 2, 339?357 (1966). · Zbl 0136.43104 · doi:10.2307/1970435
[576] A. M. A. Rodrigues, ?Sur le noyau d’un pseudo-groupe de Lie infinitésimal involutif transitif par rapport à une fibration invariante,? C. R. Acad. Sci. Paris,269, No. 24, A1154-A1155 (1969). · Zbl 0194.52704
[577] A. M. A. Rodrigues, ?Sur le quotient d’un pseudo-groupe de Lie infinitésimal transitif involutif par une fibration invariante,? C. R. Acad. Sci. Paris,269, No. 25, A1211-A1213 (1969). · Zbl 0194.52801
[578] J. Rosen, ?Mutually reciprocal ?contraction? and ?expansion? of certain Lie algebras,? Nuovo Cimento,B46, No. 1, 1?6 (1966). · Zbl 0142.23003 · doi:10.1007/BF02710632
[579] S. P. Rosen, ?Finite transformations in various representations of SU (3),? J. Math. Phys.,12, No. 4, 673?681 (1971). · Zbl 0221.20010 · doi:10.1063/1.1665634
[580] L. P. Rothschild, ?On the uniqueness of quasi-split real semisimple Lie algebras,? Proc. Amer. Math. Soc.,24, No. 1, 6?8 (1970). · Zbl 0188.08105 · doi:10.1090/S0002-9939-1970-0260814-9
[581] L. P. Rothschild, ?Invariant polynomials and conjugacy classes of real Cartan subalgebras,? Bull. Amer. Math. Soc.,77, No. 5, 762?764 (1971). · Zbl 0221.17006 · doi:10.1090/S0002-9904-1971-12798-2
[582] L. P. Rothschild, ?Orbits in a real reductive Lie algebra,? Trans. Amer. Math. Soc.,168, 403?421 (1972). · Zbl 0222.17009 · doi:10.1090/S0002-9947-1972-0349778-3
[583] A. Roux, ?Application de la suite spectrale de Hodgkin au calcul de la K-théorie des variétés Stiefel,? C. R. Acad. Sci. Paris,272, No. 18, A1179-A1181 (1971). · Zbl 0217.48603
[584] P. J. Ryan, ?Homogeneity and some curvature conditions for hypersurfaces,? Tôhoku Math. J.,21, No. 3, 363?388 (1969). · Zbl 0185.49904 · doi:10.2748/tmj/1178242949
[585] A. A. Sagle, ?On anti-commutative algebras and homogeneous spaces,? J. Math. and Mech.,16, No. 12, 1381?1393 (1967).
[586] A. A. Sagle, ?A note on simple anti-commutative algebras obtained from reductive homogeneous spaces,? Nagoya Math. J.,31, 105?124 (1968). · Zbl 0155.07101 · doi:10.1017/S0027763000012691
[587] A. A. Sagle, ?A note on triple systems and totally geodesic submanifolds in a homogeneous space,? Nagoya Math. J.,32, 5?20 (1968). · Zbl 0159.51601 · doi:10.1017/S0027763000026568
[588] A. A. Sagle, ?On homogeneous spaces, holonomy, and non-associative algebras,? Nagoya Math. J.,32, 373?394 (1968). · Zbl 0159.51503 · doi:10.1017/S0027763000026799
[589] A. A. Sagle, ?Some homogeneous Einstein manifolds,? Nagoya Math. J.,39, 81?106 (1970). · Zbl 0198.54801 · doi:10.1017/S0027763000013702
[590] A. A. Sagle and D. J. Winter, ?On homogeneous spaces and reductive subalgebras of simple Lie algebras,? Trans. Amer. Math. Soc.,128, No. 1, 142?147 (1967). · Zbl 0153.04502 · doi:10.1090/S0002-9947-1967-0227325-2
[591] E. J. Saletan, ?Contraction of Lie groups,? J. Math. Phys.,2, No. 1, 1?22 (1961). · Zbl 0098.25804 · doi:10.1063/1.1724208
[592] T. S. Santhanam, ?Some remarks on the construction of invariants of semi-simple local Lie groups,? J. Math. Phys.,7, No. 10, 1886?1888 (1966). · Zbl 0146.04305 · doi:10.1063/1.1704837
[593] T. S. Santhanam, ?Generating functions of classical groups and evaluation of partition functions,? J. Math. Phys.,10, No. 9, 1704?1710 (1969). · Zbl 0184.05002 · doi:10.1063/1.1665017
[594] R. M. Santille, ?Imbedding of Lie algebras in nonassociative structures,? Nuovo Cimento,A51, No. 2, 570?576 (1967). · Zbl 0161.23606 · doi:10.1007/BF02902200
[595] R. M. Santille, ?An introduction to Lie-admissible algebras,? Nuovo Cimento Suppl.,6, No. 4, 1225?1249 [1968(1969)].
[596] I. Satake, ?A note on holomorphic imbeddings and compactification of symmetric domains,? Amer. J. Math.,90, No. 1, 231?247 (1968). · Zbl 0187.02903 · doi:10.2307/2373434
[597] I. Satake, ?Linear imbeddings of self-dual homogeneous cones,? Nagoya Math. J.,46, 121?145 (1972). · Zbl 0253.32020 · doi:10.1017/S0027763000014811
[598] T. Satô, ?On derivations of nilpotent Lie algebras,? Tôhoku Math. J.,17, No. 3, 244?249 (1965). · Zbl 0131.03201 · doi:10.2748/tmj/1178243546
[599] T. Satô, ?The derivations of the Lie algebras,? Tôhoku Math. J.,23, No. 1, 21?36 (1971). · Zbl 0253.17012 · doi:10.2748/tmj/1178242684
[600] H. Scheerer, ?Transitive actions on Hopf homogeneous spaces,? Manuscr. Math.,4, No. 2, 99?134 (1971). · Zbl 0212.28601 · doi:10.1007/BF01169407
[601] J. H. Scheuneman, ?Two-step nilpotent Lie algebras,? Doct. Diss. Purdue Univ., Lafayette, Ind. (1966), 60 pp; Dissert. Abstrs.,B27, No. 7, 2449 (1967).
[602] J. H. Scheuneman, ?Examples of compact locally affine spaces,? Bull. Amer. Math. Soc.,77, No. 4, 589?592 (1971). · Zbl 0223.53048 · doi:10.1090/S0002-9904-1971-12764-7
[603] J. R. Schue, ?Hilbert space methods in the theory of Lie algebras,? Trans. Amer. Math. Soc.,95, No. 1, 69?80 (1960). · Zbl 0093.30601 · doi:10.1090/S0002-9947-1960-0117575-1
[604] J. R. Schue, ?Cartan decompositions for L* -algebras,? Trans. Amer. Math. Soc.,98, No. 2, 334?349 (1961). · Zbl 0099.10205
[605] G. Segal, ?The representation ring of a compact Lie group,? Publ. Math. Inst. Hautes Études Sci., No. 34, 113?128 (1968). · Zbl 0209.06203 · doi:10.1007/BF02684592
[606] J. Segercrantz, ?On continuous subgroups of the proper Lorentz group,? Soumalias. Tiedeakat. Toimituks.,Ser.AVI, No. 233, 1?46 (1967).
[607] J. Segercrantz, ?Disconnected subgroups of certain transformation groups,? Soumalais. Tiedeakat. Toimituks., Ser.AVI, No. 283, 1?8 (1968).
[608] J.-P. Serre, ?Cohomologie des groupes discrets,? Ann. Math. Stud., No. 70, 77?169 (1971). · Zbl 0229.57016
[609] R. D. Shafer, ?On the simplicity of the Lie algebras E7 and E8,? Proc. Kon. Ned. Acad. Wetensch.,A69, No. 1, 64?69 (1966); Indag. Math.,28, No. 1, 64#x2013;69 (1966).
[610] M. M. Shahshahani, ?Discontinuous subgroups of extensions of semisimple Lie groups,? Doct. Diss. Univ. Calif., Berkeley (1970), 34 pp.
[611] R. A. Shapiro, ?Pseudo-Hermitian symmetric spaces,? Comment. Math. Helv.,46, No. 4, 529?548 (1971). · Zbl 0229.53043 · doi:10.1007/BF02566863
[612] R. Shaw, ?The subgroup structure of the homogeneous Lorentz group,? Quart. J. Math.,21, No. 81, 101?124 (1970). · Zbl 0217.08703 · doi:10.1093/qmath/21.1.101
[613] S. Shnider, ?Classification of the real infinite simple and real infinite primitive Lie algebras,? Proc. Nat. Acad. Sci. USA,64, No. 2, 466?471 (1969). · Zbl 0244.17013 · doi:10.1073/pnas.64.2.466
[614] S. Shnider, ?The classification of real primitive infinite Lie algebras,? J. Different. Geom.,4, No. 1, 81?89 (1970). · Zbl 0244.17014 · doi:10.4310/jdg/1214429277
[615] J. de Siebenthal, ?Sur certains modules dans une algèbre de Lie semi-simple,? Comment. Math. Helv.,44, No. 1, 1?44 (1969). · Zbl 0185.08601 · doi:10.1007/BF02564509
[616] F. Sigrist, ?Détermination des groupes d’homotopie ? 2k+7 (U*h+m,m),? C. R. Acad. Sci. Paris,269, No. 22, A1061-A1062 (1969). · Zbl 0185.27005
[617] C. Simionescu, ?Tensori armonici si forme spatiale ale grupurilor Lie,? An. Sti. Univ. Iasi, Sec. la,17, No. 1, 167?169 (1971).
[618] A. Simoni, F. Zaccariu, and B. Vitale, ?Dynamical symmetries as function groups on dynamical spaces,? Nuovo Cimento,A51, No. 2, 448?460 (1967). · Zbl 0152.41503 · doi:10.1007/BF02902189
[619] I. M. Singer and S. Sternberg, ?The infinite groups of Lie and Cartan. Part I. Transitive groups,? J. Anal. Math.,15, 1?114 (1965). · Zbl 0277.58008 · doi:10.1007/BF02787690
[620] W. Slebodzi?ski, ?Sur deux groupes infinis et continus,? Zast. Mat.,10, 17?30 (1969).
[621] W. Smoke, ?Invariant differential operators,? Trans. Amer. Math. Soc.,127, No. 3, 460?494 (1967). · Zbl 0158.42101 · doi:10.1090/S0002-9947-1967-0210835-1
[622] V. P. Snaith, ?On the K-theory of homogeneous spaces and conjugate bundles of Lie groups,? Proc. Lond. Math. Soc.,22, No. 3, 562?584 (1971). · Zbl 0212.28001 · doi:10.1112/plms/s3-22.3.562
[623] L. Solomon and V. Daya-Nard, ?Sur le corps des quotients de l’algèbre enveloppante d’une algèbre de Lie,? C. R. Acad. Sci. Paris,264, No. 23, A985-A986 (1967). · Zbl 0163.03004
[624] K. Sprinivasacharyulu, ?Topology of some Kähler manifolds,? Pacif. J. Math.,23, No. 1, 167?169 (1967). · Zbl 0157.28502 · doi:10.2140/pjm.1967.23.167
[625] K. Sprinivasacharyulu, ?Topology of some Kähler manifolds. II,? Can. Math. Bull.,12, No. 4, 457?460 (1969). · Zbl 0186.55302 · doi:10.4153/CMB-1969-056-1
[626] E. M. Stein and G. Weiss, ?Generalization of the Cauchy-Riemann equations and representations of the rotation group,? Amer. J. Math.,90, No. 1, 163?196 (1968). · Zbl 0157.18303 · doi:10.2307/2373431
[627] D. Sternheimer, ?Extensions et unifications d’algèbres de Lie,? J. Math. Pures et Appl.,47, No. 3, 247?287 (1968). · Zbl 0244.17015
[628] H. Stetkaer, ?Invariant pseudo-differential operators,? Math. Scand.,28, No. 1, 105?123 (1971). · Zbl 0226.58010 · doi:10.7146/math.scand.a-11009
[629] A. P. Stone, ?Semisimple subgroups of semisimple groups,? J. Math. Phys.,11, No. 1, 29?38 (1970). · Zbl 0202.03001 · doi:10.1063/1.1665060
[630] S. Ström, ?Construction of representations of the inhomogeneous Lorentz group by means of contraction of representations of the (1+4) de Sitter group,? Arkiv. Fys.,30, No. 5, 455?472 (1965).
[631] S. Ström, ?On the contraction of representations of the Lorentz group to representations of the Euclidean group,? Arkiv. Fys.,30, No. 3, 267?281 (1965).
[632] K. Sugita and M. Sugiura, ?On a certain type of duality theorem,? Scient. Papers Coll. Gen. Educ. Univ. Tokyo,18, No. 2, 115?124 (1968). · Zbl 0172.03602
[633] M. Sugiura, ?Some remarks on duality theorems of Lie groups,? Proc. Jap. Acad.,43, No. 10, 927?931 (1967). · Zbl 0168.27603 · doi:10.3792/pja/1195521386
[634] A. ?vec, ?On the geometry of submanifolds in homogeneous spaces,? Mat. Cas.,17, No. 2, 146?166 (1967).
[635] A. ?vec, ?Inner geometry of submanifolds of homogeneous spaces,? Czech. Math. J.,17, No. 3, 460?466 (1967).
[636] A. ?vec, ?Deformations of submanifolds of homogeneous spaces,? ?ac. P?stov. Mat.,93, No. 1, 22?29 (1968).
[637] S. Swierczkowski, ?The path-functor on Banach-Lie algebras,? Proc. Kon. Ned. Akad. Wetensch.,A74, No. 3, 235?239 (1971); Indag. Math.,31, No. 3, 235?239 (1971). · Zbl 0213.13702 · doi:10.1016/S1385-7258(71)80031-8
[638] M. Takeuchi, ?On orbits in a compact hermitian symmetric space,? Amer. J. Math.,9, No. 3, 657?680 (1968). · Zbl 0181.24304 · doi:10.2307/2373477
[639] M. Takeuchi, ?On infinitesimal affine automorphisms of Siegel domains,? Proc. Jap. Acad.,45, No. 7, 590?594 (1969). · Zbl 0206.36805 · doi:10.3792/pja/1195520677
[640] M. Takeuchi, ?On the fundamental group of a simple Lie group,? Nagoya Math. J.,40, 147?159 (1970). · Zbl 0213.31402 · doi:10.1017/S0027763000013921
[641] M. Takeuchi, ?A remark on the character ring of a compact Lie group,? J. Math. Soc. Jap.,23, No. 4, 662?675 (1971). · Zbl 0217.36905 · doi:10.2969/jmsj/02340662
[642] S. J. Takiff, ?Rings of invariant polynomials for a class of Lie algebras,? Trans. Amer. Math. Soc.,160, 249?262 (1971). · Zbl 0232.22027 · doi:10.1090/S0002-9947-1971-0281839-9
[643] N. Tanaka, ?On generalized graded Lie algebras and geometric structures. I,? J. Math. Soc. Jap.,19, No. 2, 215?254 (1967). · Zbl 0165.56002 · doi:10.2969/jmsj/01920215
[644] N. Tanaka, ?On infinitesimal automorphisms of Siegel domains,? Proc. Jap. Acad.,45, No. 5, 335?338 (1969). · Zbl 0206.36804 · doi:10.3792/pja/1195520753
[645] N. Tanaka, ?On infinitesimal automorphisms of Siegel domains,? J. Math. Soc. Jap.,22, No. 2, 180?212 (1970). · Zbl 0188.08106 · doi:10.2969/jmsj/02220180
[646] Hui-min Tao, ?The maximal nonsemisimple subalgebra of a noncompact real semisimple Lie algebra,? Chinese Math.,8, No. 2, 265?282 (1966).
[647] H. Tilgner, ?A class of solvable Lie groups and their relation to the canonical formalism,? Ann. Inst. H. Poincaré,A13, No. 2, 103?127 (1970).
[648] H. Tilgner, ?A class of Lie and Jordan algebras realized by means of the canonical commutation relations,? Ann. Inst. H. Poincaré,A14, No. 2, 179?188 (1971). · Zbl 0211.35604
[649] J. Tits, ?Une classe d’algèbres de Lie en relation avec les algèbres de Jordan,? Proc. Kon Ned. Akad. Wetensch.,A65, No. 5, 530?535 (1962); Indag. Math.,24, No. 5, 530?535 (1962). · Zbl 0104.26002 · doi:10.1016/S1385-7258(62)50051-6
[650] J. Tits, ?Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I. Construction,? Proc. Kon. Ned. Akad. Wetensch.,A69, No. 2, 223?237 (1966); Indag. Math.,28, No. 2, 223?237 (1966). · Zbl 0139.03204 · doi:10.1016/S1385-7258(66)50028-2
[651] J. Tits, ?Sur les constantes de structure et le théor?me d’existence des algèbres de Lie semi-simples,? Pubis. Math. Inst. Hautes Études Scient., No. 31, 525?562 [1966(1967)]. · Zbl 0145.25804
[652] S. Tôgô, ?Dimensions of the derivation algebras of Lie algebras,? J. Sci. Hiroshima Univ., Ser. A, Div. 1,31, No. 1, 17?23 (1967). · Zbl 0096.25603
[653] S. Tôgô, ?Outer derivations of Lie algebras,? Trans. Amer. Math. Soc.,128, No. 2, 264?276 (1967). · Zbl 0153.36001 · doi:10.2307/1994323
[654] S. Tôgô, ?On a class of Lie algebras,? J. Sci. Hiroshima Univ., Ser. A, Div. 1,32, No. 1, 55?83 (1968).
[655] S. Tôgô, ?Note on outer derivations of Lie algebras,? J. Sci. Hiroshima Univ., Ser. A, Div. 1,33, No. 1, 29?40 (1969).
[656] R. Tolimieri, ?Structure of solvable Lie groups,? J. Algebra,16, No. 4, 597?625 (1970). · Zbl 0231.22015 · doi:10.1016/0021-8693(70)90010-4
[657] R. Tolimieri, ?Applications of the semisimple splitting,? Bull. Amer. Math. Soc.,77, No. 2, 275?280 (1971). · Zbl 0239.22012 · doi:10.1090/S0002-9904-1971-12718-0
[658] R. Tolimieri, ?On the Selberg condition for subgroups of solvable Lie groups,? Bull. Amer. Math. Soc.,77, No. 4, 584?586 (1971). · Zbl 0232.22017 · doi:10.1090/S0002-9904-1971-12762-3
[659] G. Tomassini, ?Complessificazione di un gruppo de Lie reale,? An. Scuola Norm. Super. Risa, Sci. Fis. e Mat.,22, No. 1, 101?106 (1968). · Zbl 0157.06701
[660] M. Umezawa, ?Invariant quantities in simple groups B, C and D. I,? Proc. Kon. Ned. Akad. Wetensch.,B69, No. 5, 579?591 (1966). · Zbl 0152.22905
[661] M. Umezawa, ?Invariant quantities in simple groups B, C and D. II,? Proc. Kon. Ned. Akad. Wetensch.,B69, No. 5, 592?606 (1966).
[662] M. Umezawa, ?Invariant quantities in simple groups B. C and D. III,? Proc. Kon. Ned. Akad. Wetensch.,B69, No. 5, 607?619 (1966). · Zbl 0152.22905
[663] M. Umezawa, ?Invariant quantities in simple groups B, C and D. IV,? Proc. Kon. Ned. Akad. Wetensch.,B69, No. 5, 620?628 (1966).
[664] I. Unsain, ?Classification of the simple separable real L*-algebras,? Bull. Amer. Math. Soc.,77, No. 3, 462?466 (1971). · Zbl 0215.48403 · doi:10.1090/S0002-9904-1971-12740-4
[665] V. S. Varadarajan, ?On the ring of invariant polynomials on a semisimple Lie algebra,? Amer. J. Math.,90, No. 1, 308?317 (1968). · Zbl 0205.33303 · doi:10.2307/2373439
[666] F. D. Veldkamp, ?Unitary groups in protective octave planes,? Compos. Math., s.a.,19, No. 3, 213?258 (1968). · Zbl 0195.50402
[667] M. Vergne, ?Réductibilité de la variété des algèbres de Lie nilpotentes,? C. R. Acad. Sci. Paris,263, No. 1, A4-A6 (1966). · Zbl 0145.25902
[668] M. Vergne, ?La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotent,? C. R. Acad. Sci. Paris,269, No. 20, A950-A952 (1969). · Zbl 0204.35902
[669] M. Vergne, ?Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,? Bull. Soc. Math. France,98, No. 2, 81?116 (1970). · Zbl 0244.17011 · doi:10.24033/bsmf.1695
[670] M. Vergne, ?Construction des sous-algèbres subordonnées à un élément du dual d’une algèbre de Lie résoluble,? C. R. Acad. Sci. Paris,270, No. 3, A173-A175 (1970). · Zbl 0209.06701
[671] M. Vergne, ?Construction des sous-algèbres subordonnées à un élément du dual d’une algèbre de Lie résoluble,? C. R. Acad. Sci. Paris,270, No. 11, A704-A707 (1970). · Zbl 0209.06702
[672] M. Vergne and J. Wolf, ?Existence de polarisations positives dans les algèbres de Lie,? C. R. Acad. Sci. Paris,274, No. 4, A299-A302 (1972). · Zbl 0249.17016
[673] J. Vey, ?Sur les automorphismes affines des ouverts convexes dans les espaces numériques,? C. R. Acad. Sci. Paris,270, No. 4, A249-A251 (1970). · Zbl 0186.55701
[674] J. Vey, ?Sur la division des domaines bornés,? C. R. Acad. Sci. Paris,270, No. 26, A1748-A1749 (1970). · Zbl 0195.09502
[675] J. Vey, ?Sur les automorphismes affines des ouverts convexes saillants,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. e Mat.,24, No. 4, 641?665 [1970(1971)]. · Zbl 0206.51302
[676] J. Vey, ?Sur la cohomologie de l’algèbre des champs de vecteurs sur une variété,? C. R. Acad. Sci. Paris,273, No. 19, A850-A852 (1971). · Zbl 0246.57019
[677] J. Voisin, ?Energy balance and projective extensions of the Poincaré and the Galilei groups,? Bull. Soc. Roy. Sci. Liège,38, Nos. 1?2, 27?34 (1969).
[678] G. G. Vr?nceanu, ?Nombres de Betti de certain groupes intégrables,? Rev. Roumaine Math. Pures et Appl.,14, No. 6, 859?876 (1969).
[679] G. G. Vr?nceanu, ?La classification des structures des groupes continus G4 intégrables,? Rev. Roumaine Math. Pures et Appl.,14, No. 6, 877?883 (1969).
[680] C. T. C. Wall, ?Graded algebras, anti-involutions, simple groups and symmetric spaces,? Bull. Amer. Math. Soc.,74, No. 1, 198?202 (1968). · Zbl 0155.07502 · doi:10.1090/S0002-9904-1968-11941-X
[681] N. R. Wallach, ?A classification of real simple Lie algebras,? Doct. Diss. Washington Univ., St. Louis Mo. (1966), 41 pp; Diss. Abstrs.,B27, No. 6, 2049 (1966).
[682] N. R. Wallach, ?On maximal subsystems of root systems,? Can. J. Math.,20, No. 3, 555?574 (1968). · Zbl 0235.17007 · doi:10.4153/CJM-1968-056-4
[683] N. R. Wallach, ?Induced representations of Lie algebras and a theorem of Borel-Weil,? Trans. Amer. Math. Soc.,136, 181?187 (1969). · Zbl 0294.17005
[684] N. R. Wallach, ?Induced representations of Lie algebras. II,? Proc. Amer. Math. Soc.,24, No. 1, 161?166 (1969). · Zbl 0294.17006 · doi:10.1090/S0002-9939-1969-0237590-0
[685] N. R. Wallach, ?Homogeneous positively pinched Riemannian manifolds,? Bull. Amer. Math. Soc.,76, No. 4, 783?786 (1970). · Zbl 0197.48003 · doi:10.1090/S0002-9904-1970-12551-4
[686] Hsien-Ching Wang, ?Root systems and Abelian subgroups of compact Lie groups,? Proc. U.S.-Japan, Semin. Different. Geom., Kyoto, 1965, Tokyo, (1966), pp. 151?152.
[687] Hsien-Ching Wang, ?On a maximality property of discrete subgroups with fundamental domains of finite measure,? Amer. J. Math.,89, No. 1, 124?132 (1967). · Zbl 0152.01002 · doi:10.2307/2373102
[688] Hsien-Ching Wang, ?Discrete nilpotent subgroups of Lie groups,? J. Different. Geom.,3, No. 4, 481?492 (1969). · Zbl 0197.30403 · doi:10.4310/jdg/1214429069
[689] Kuo-Hsiang Wang, ?Clebsch-Gordan series and the Clebsch-Gordan coefficients of O (2, 1) and SU(1, 1),? J. Math. Phys.,11, No. 7, 2077?2095 (1970). · doi:10.1063/1.1665368
[690] S. P. Wang, ?Limit of lattices in a Lie group,? Trans. Amer. Math. Soc.,133, No. 2, 519?526 (1968). · Zbl 0164.34301 · doi:10.1090/S0002-9947-1968-0235066-1
[691] S. P. Wang, ?On the centralizer of a lattice,? Proc. Amer. Math. Soc.,21, No. 1, 21?23 (1969). · Zbl 0175.02203 · doi:10.1090/S0002-9939-1969-0237708-X
[692] S. P. Wang, ?On a conjecture of Chabauty,? Proc. Amer. Math. Soc.,23, No. 3, 569?572 (1969). · doi:10.1090/S0002-9939-1969-0255728-6
[693] S. P. Wang, ?On a theorem of representation of lattices,? Proc. Amer. Math. Soc.,23, No. 3, 583?587 (1969). · Zbl 0214.04603 · doi:10.1090/S0002-9939-1969-0248278-4
[694] S. P. Wang, ?The dual space of semi-simple Lie groups,? Amer. J. Math.,91, No. 4, 921?937 (1969). · Zbl 0192.36102 · doi:10.2307/2373310
[695] S. P. Wang, ?Some properties of lattices in a Lie group,? Ill. J. Math.,14, No. 1, 35?39 (1970).
[696] M. L. Whippman, ?Branching rules for simple Lie groups,? J. Math. Phys.,6, No. 10, 1534?1539 (1965). · Zbl 0134.03401 · doi:10.1063/1.1704691
[697] J. A. Wolf, ?Complex homogeneous contact manifolds and quaternionic symmetric spaces,? J. Math. and Mech.,14, No. 6, 1033?1047 (1965).
[698] J. A. Wolf, ?The geometry and structure of isotropy irreducible homogeneous spaces,? Acta Math.,120, Nos. 1?2, 59?148 (1968). · Zbl 0157.52102 · doi:10.1007/BF02394607
[699] J. A. Wolf, ?Symmetric spaces which are real cohomology spheres,? J. Different. Geom.,3, No. 1, 59?68 (1969). · Zbl 0191.20101 · doi:10.4310/jdg/1214428818
[700] J. A. Wolf, ?A compatibility condition between invariant Riemannian metrics and Levi-Whitehead decompositions on a coset space,? Trans. Amer. Math. Soc.,139, 429?442 (1969). · Zbl 0182.24201 · doi:10.1090/S0002-9947-1969-0252573-7
[701] J. A. Wolf, ?The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc component,? Bull. Amer. Math. Soc.,75, No. 6, 1121?1237 (1969). · Zbl 0183.50901 · doi:10.1090/S0002-9904-1969-12359-1
[702] J. A. Wolf, ?The automorphism group of a homogeneous almost-complex manifold,? Trans. Amer. Math. Soc.,144, 535?543 (1970). · Zbl 0187.19401 · doi:10.1090/S0002-9947-1969-0256300-9
[703] J. A. Wolf, ?A commutativity criterion for closed subgroups of compact Lie groups,? Proc. Amer. Math. Soc.,27, No. 3, 619?622 (1971). · Zbl 0214.28801
[704] J. A. Wolf and A. Gray, ?Homogeneous spaces defined by Lie group automorphisms. I,? J. Different. Geom.,2, No. 1, 77?114 (1968). · Zbl 0169.24103 · doi:10.4310/jdg/1214501139
[705] J. A. Wolf, ?Homogeneous spaces defined by Lie group automorphisms. II,? J. Different. Geom.,2, No. 2, 115?159 (1968). · Zbl 0182.24702 · doi:10.4310/jdg/1214428252
[706] L. S. Wollenberg, ?Derivations of the Lie algebra of polynomials under Poisson bracket,? Proc. Amer. Math. Soc.,20, No. 2, 315?320 (1969). · Zbl 0177.05701
[707] M. K. F. Wong, ?Branching laws, inner multiplicities, and decomposition of classical groups,? J. Math. Phys.,11, No. 4, 1489?1495 (1970). · Zbl 0194.05002 · doi:10.1063/1.1665285
[708] T. S. Wu, ?Discrete uniform subgroups of Lie groups,? Topology,9, No. 2, 137?140 (1970). · Zbl 0198.05002 · doi:10.1016/0040-9383(70)90034-0
[709] T. S. Wu, On (CA) topological groups. II,? Duke Math. J.,38, No. 3, 513?519 (1971). · Zbl 0219.22010 · doi:10.1215/S0012-7094-71-03861-0
[710] K. Yagi, ?On compact homogeneous affine manifolds,? Osaka J. Math.,7, No. 2, 457?475 (1970). · Zbl 0219.53042
[711] Chin-ta Yen, ?Sur les espaces symétriques non compacts,? Scientia Sinica,14, No. 1, 31?38 (1965).
[712] Chin-ta Yen, ?Sur la sous-algèbre régulière d’une algèbre de Lie semisimple réele non-compacte,? Scientia Sinica,14, No. 6, 917?920 (1965).
[713] F. J. Yndu?ain, ?The Heisenberg algebra and contractions of the rotation algebra,? Nuovo Cimento,A50, No. 2, 308?312 (1967). · doi:10.1007/BF02827738
[714] P. B. Zwart, ?Compact homogeneous spaces possessing invariant contact, symplectic or cosymplectic structures,? Doct. Diss. Washington Univ., St. Louis, Mo. (1965), 73 pp; Diss. Abstrs.,26, No. 11, 6756 (1966).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.