zbMATH — the first resource for mathematics

Alfred Clebsch’s “geometrical clothing” of the theory of the quintic equation. (English) Zbl 1360.01025
Let us start with the author’s summary: “This paper describes A. Clebsch’s article [Math. Ann. 4, 284–345 (1871; JFM 03.0031.01)] that gave a geometrical interpretation of elements of the theory of the general algebraic equation of degree 5. Clebsch’s approach is used here to illuminate the relations between geometry, intuition, figures, and visualization at the time. In this paper, we try to delineate clearly what he perceived as geometric in his approach, and to show that Clebsch’s use of geometrical objects and techniques is not intended to aid visualization matters, but rather is a way of directing algebraic calculations. We also discuss the possible reasons why the article of Clebsch has been eventually completely forgotten by the historiography.”
As a reviewer, I am able to admit that the author did do a perfect job in fulfilling his aims. The paper brings to light many not so commonly things regarding the history of the quintic equation. Also, much has been revealed of Alfred Clebsch as a scientist in his time, and about all the work he did and also his contemporaries in treating the quintic equation. In short, highly recommended, a very good historical account from which one can learn and read a lot.

01A55 History of mathematics in the 19th century
01A70 Biographies, obituaries, personalia, bibliographies
11-03 History of number theory
11D41 Higher degree equations; Fermat’s equation
11E99 Forms and linear algebraic groups
11F03 Modular and automorphic functions
01A85 Historiography
Biographic References:
Clebsch, Alfred
Full Text: DOI
[1] Beauville, A, De combien de paramètres dépend l’équation générale de degré \(n\) ?, Gazette des Mathématiciens, 132, 5-15, (2012) · Zbl 1263.13003
[2] Bottazzini, U; Grattan-Guinness, I (ed.), Solving higher-degree equations, No. 1, 567-575, (1994), London
[3] Brill, A; Gordan, P; Klein, F; Lüroth, J; Mayer, A; Noether, M; Mühll, K, Rudolf friedrich Alfred Clebsch - versuch einer darlegung und Würdigung seiner wissenschaftlichen leistungen, Mathematische Annalen, 7, 1-55, (1873) · JFM 05.0029.05
[4] Cayley, A, On the triple tangent planes of surfaces of third order, The Cambridge and Dublin Mathematical Journal, 4, 118-132, (1849)
[5] Clebsch, A, Ueber symbolische darstellung algebraischer formen, Journal für die reine und angewandte Mathematik, 59, 1-62, (1861) · ERAM 059.1554cj
[6] Clebsch, A, Ueber die anwendung der abelschen functionen in der geometrie, Journal für die reine und angewandte Mathematik, 63, 189-243, (1864) · ERAM 063.1646cj
[7] Clebsch, A, Die geometrie auf den flächen dritter ordnung, Journal für die reine und angewandte Mathematik, 65, 359-380, (1866) · ERAM 065.1709cj
[8] Clebsch, A. 1871a. Bemerkungen zu der Theorie der Gleichungen \(5^{{\rm ten}}\) und \(6^{{\rm ten}}\) Grades. In Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität, 103-108 · JFM 63.0018.01
[9] Clebsch, A, Ueber die anwendung der quadratischen substitution auf die gleichungen \(5^{{\rm ten}}\) grades und die geometrische theorie des ebenen Fünfseits, Mathematische Annalen, 4, 284-345, (1871) · JFM 03.0031.01
[10] Clebsch, A, Ueber die geometrische interpretation der höheren transformationen binärer formen und der formen 5ter ordnung insbesondere, Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität, 12, 335-345, (1871) · JFM 03.0031.02
[11] Clebsch, A, Ueber die partiellen differentialgleichungen, welchen die absoluten invarianten binären formen bei höheren transformationen genügen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 15, 65-99, (1871)
[12] Clebsch, A. 1872. Theorie der binären algebraischen Formen. Leipzig: Teubner. · JFM 02.0058.02
[13] Clebsch, A. 1876. Vorlesungen über Geometrie. Leipzig: Teubner. · JFM 08.0421.01
[14] Clebsch, A., and P. Gordan. 1866. Theorie der Abelschen Functionen. Leipzig: Teubner.
[15] Clebsch, A; Gordan, P, Sulla rappresentazione tipica delle forme binarie, Annali di Matematica Pura ed Applicata, 1, 23-79, (1867) · JFM 01.0058.01
[16] Dieudonné, J. 1974. Cours de géométrie algébrique, Voi. 1. Aperçu historique sur le développement de la géométrie algébrique. Paris: Presses Universitaires de France. · Zbl 1085.14500
[17] Dugac, P. 1976. Richard Dedekind et les fondements des mathématiques. Paris: Vrin. · Zbl 0321.01027
[18] Ehrhardt, C. 2012. Itinéraires d’un texte mathématique: Les réélaborations des écrits d’Évariste Galois au\({\rm XIX}^{{\rm e}}\)siècle. Paris: Hermann. · Zbl 1321.01029
[19] Fischer, G. 1986. Mathematische Modelle. Braunschweig & Wiesbaden: Vieweg & Sohn.
[20] Fisher, CS, The death of a mathematical theory: A study in the sociology of knowledge, Archive for History of Exact Sciences, 3, 137-159, (1966) · Zbl 0192.01504
[21] Flament, D. 2003. Histoire des nombres complexes. Entre algèbre et géométrie, Éditions du CNRS.
[22] Gauthier, S, La géométrie dans la géométrie des nombres : histoire de discipline ou histoire de pratiques à partir des exemples de Minkowski, Mordell et Davenport, Revue d’histoire des mathématiques, 15, 183-230, (2009) · Zbl 1198.01020
[23] Giaquinto, M. 2007. Visual Thinking in mathematics: An epistemological study. Oxford: Oxford University Press. · Zbl 1175.00023
[24] Giardino, V; Toffoli, S, Forms and roles of diagrams in knot theory, Erkenntnis, 74, 829-842, (2013) · Zbl 1304.57013
[25] Goldstein, C, Charles hermite’s stroll through the Galois field, Revue d’histoire des mathématiques, 17, 211-270, (2011) · Zbl 1258.01011
[26] Gordan, P, Ueber die invarianten binären formen bei höheren transformationen, Journal für die reine und angewandte Mathematik, 71, 164-194, (1870) · JFM 02.0069.01
[27] Gray, J; McCleary, J (ed.); Rowe, DE (ed.), Algebraic geometry in the late nineteenth century, 361-385, (1989), London
[28] Gray, J. 2000. Linear differential equations and group theory from Riemann to Poincaré, 2nd ed. Basel: Birkhäuser. (First edition 1986). · Zbl 0192.01504
[29] Hermite, C, Sur la résolution de l’équation du cinquième degré, Comptes rendus des séances de l’Académie des sciences, 46, 508-515, (1858)
[30] Hermite, C, Sur quelques théorèmes d’algèbre et la résolution de l’équation du quatrième degré, Comptes rendus des séances de l’Académie des sciences, 46, 961-967, (1858)
[31] Hermite, C. 1865-1866. Sur l’équation du cinquième degré. Comptes rendus des séances de l’Académie des Sciences 61-62:877-882, 965-972, 1073-1081, 65-72, 157-162, 245-252, 715-722, 919-924, 959-966, 1054-1059, 1161-1167, 1213-1215
[32] Houzel, C. 2002. La Géométrie algébrique: Recherches historiques. Paris: Albert Blanchard. · Zbl 1015.14001
[33] Kiernan, BM, The development of Galois theory from Lagrange to Artin, Archive for History of Exact Sciences, 8, 40-154, (1971) · Zbl 0231.01003
[34] Klein, F, Ueber eine geometrische repräsentation der resolventen algebraischer gleichungen, Mathematische Annalen, 4, 346-358, (1871) · JFM 03.0060.02
[35] Klein, F. 1884. Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. Leipzig: Teubner. · JFM 16.0061.01
[36] Kronecker, L, Sur la résolution de l’équation du cinquième degré; extrait d’une lettre adressée à m. Hermite, Comptes rendus des séances de l’Académie des sciences, 46, 1150-1152, (1858)
[37] Kung, JPS; Rota, GC, The invariant theory of binary forms, Bulletin of the American Mathematical Society, 10, 27-85, (1984) · Zbl 0577.15020
[38] Lê, F, Entre géométrie et théorie des substitutions : une étude de cas autour des vingt-sept droites d’une surface cubique, Confluentes Mathematici, 5, 23-71, (2013) · Zbl 1320.01013
[39] Lê, F. 2015a. “Geometrical Equations”: Forgotten Premises of Fleix Klein’s Erlanger Programm. Historia Mathematica 42(3): 315-342. · Zbl 1325.01015
[40] Lê, F. 2015b. Vingt-sept droites sur une surface cubique : rencontres entre groupes, équations et géométrie dans la deuxième moitié du \({\rm XIX}^{{\rm e}}\) siècle. Ph.D. thesis, Université Pierre et Marie Curie (Paris). · JFM 03.0031.02
[41] Lê, F. 2016. Reflections on the notion of culture in the history of mathematics: The example of “Geometrical Equations” Science in Context (to appear). · JFM 03.0031.01
[42] Lemmermeyer, F; Goldstein, C (ed.); Schappacher, N (ed.); Schwermer, J (ed.), The development of the principal genus theorem, 527-561, (2007), Berlin
[43] Lorenat, J, Figures real, imagined, and missing in Poncelet, Plücker, and gergonne, Historia Mathematica, 42, 155-192, (2015) · Zbl 1321.01029
[44] Lorey, W, Die Mathematik an der universität gießen vom beginn des 19. jahrhunderts bis 1914, Nachrichten der Giessener Hochschulgesellschaft, 11, 54-97, (1937) · JFM 63.0018.01
[45] Neumann, C. 1872. Zum Andenken an Rudolf Friedrich Alfred Clebsch. In Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität, 550-559 · JFM 04.0018.02
[46] Noether, M, Otto Hesse, Zeitschrift für Mathematik und Physik: Historisch-literarische Abtheilung, 20, 77-88, (1875) · JFM 07.0012.02
[47] Parshall, KH; McCleary, J (ed.); Rowe, DE (ed.), Toward a history of nineteenth-century invariant theory, 157-206, (1989), London
[48] Petri, B; Schappacher, N; Laudal, OA (ed.); Piene, R (ed.), From Abel to Kronecker. episodes from 19th century algebra, 227-266, (2004), Berlin · Zbl 1160.12001
[49] Polo-Blanco, I. 2007. Theory and history of geometric models.
[50] Rowe, DE, Klein, Hilbert, and the Göttingen mathematical tradition, Osiris, 5, 186-213, (1989) · Zbl 0894.01003
[51] Rowe, DE, Mathematical models as artefacts for research: felix Klein and the case of Kummer surfaces, Mathematische Semesterberichte, 60, 1-24, (2013) · Zbl 1273.01033
[52] Salmon, G, On the triple tangent planes to a surface of the third order, The Cambridge and Dublin Mathematical Journal, 4, 252-260, (1849)
[53] Shafarevich, I, Zum 150. geburtstag von Alfred Clebsch, Mathematische Annalen, 266, 133-140, (1983) · Zbl 0519.01013
[54] Tournès, D, Diagrams in the theory of differential equations (eighteenth to nineteenth centuries), Synthese, 186, 257-288, (2012) · Zbl 1274.01035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.