×

zbMATH — the first resource for mathematics

On the dimension of coincidence sets. (English) Zbl 0237.55006

MSC:
55M20 Fixed points and coincidences in algebraic topology
54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexandroff-Hopf, Topologie I, Springer Verlag, 1935.
[2] Fuller, F.B., The homotopy theory of coincidences, Thesis, Princeton 1951.
[3] Fuller, F. B., The homotopy theory of coincidences, Ann. of Math.59 (1954) 219–226. · Zbl 0056.16501 · doi:10.2307/1969688
[4] Franz, W., Über die Graphen der Abbildungen einer Mannigfaltigkeit in eine andere. Archiv der Math. X (1959) 34–39. · Zbl 0087.38402 · doi:10.1007/BF01240756
[5] Hopf, H., Die Coincidenz-Cozyklen und eine Formel aus der Fasertheorie. Algebraic Geometrie and Topology, Princeton University Press, 1957. · Zbl 0213.24503
[6] Hurewicz-Wallman, Dimension Theory, Princeton University Press, 1941.
[7] Kaplan, S., Homology Properties of Arbitrary Subsets of Euclidean Spaces, Trans. Amer. Math. Soc.62 (1947) 248–271. · Zbl 0034.10902 · doi:10.1090/S0002-9947-1947-0024128-6
[8] Mayer, W., On Products in Topology, Ann. of Math.46 (1945) 29–57. · Zbl 0061.40401 · doi:10.2307/1969144
[9] Schirmer, H., Mindestzahlen von Koinzidenzpunkten. Journ. reine angew. Math.194 (1955) 21–39. · Zbl 0066.41701 · doi:10.1515/crll.1955.194.21
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.