×

zbMATH — the first resource for mathematics

Marston Morse and his mathematical works. (English) Zbl 0469.01012

MSC:
01A70 Biographies, obituaries, personalia, bibliographies
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
58-03 History of global analysis
01A60 History of mathematics in the 20th century
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Marston Morse, Proof of a general theorem on the linear dependence of P analytic functions of a single variable, Bull. Amer. Math. Soc. 23 (1916), 114-117. · JFM 46.0532.05
[2] Harold Marston Morse, A One-to-One Representation of Geodesics on a Surface of Negative Curvature, Amer. J. Math. 43 (1921), no. 1, 33 – 51. · JFM 48.0786.05 · doi:10.2307/2370306 · doi.org
[3] Harold Marston Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), no. 1, 84 – 100. · JFM 48.0786.06
[4] Harold Marston Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc. 26 (1924), no. 1, 25 – 60. · JFM 50.0466.04
[5] Marston Morse, Relations between the critical points of a real function of \? independent variables, Trans. Amer. Math. Soc. 27 (1925), no. 3, 345 – 396. · JFM 51.0451.01
[6] Marston Morse, The analysis and analysis situs of regular n-spreads in (n + s)-space, Proc. Nat. Acad. Sci. 13 (1927), 813-817. · JFM 53.0563.01
[7] Marston Morse, The foundations of a theory in the calculus of variations in the large, Trans. Amer. Math. Soc. 30 (1928), no. 2, 213 – 274. · JFM 54.0528.01
[8] Marston Morse, Singular Points of Vector Fields Under General Boundary Conditions, Amer. J. Math. 51 (1929), no. 2, 165 – 178. · JFM 55.0972.02 · doi:10.2307/2370703 · doi.org
[9] Marston Morse, The critical points of functions and the calculus of variations in the large, Bull. Amer. Math. Soc. 35 (1929), 38-54. · JFM 55.0293.01
[10] Marston Morse, The foundations of the calculus of variations in the large in \?-space. I, Trans. Amer. Math. Soc. 31 (1929), no. 3, 379 – 404. · JFM 55.0906.02
[11] Marston Morse, Closed extremals, Proc. Nat. Acad. Sci. 15 (1929), 856-959.
[12] Marston Morse, The problems of Lagrange and Mayer under general end conditions, Proc. Nat. Acad. Sci. 16 (1930), 229-233. · JFM 56.1079.03
[13] Marston Morse, A generalization of the sturm separation and comparison theorems in \?-space, Math. Ann. 103 (1930), no. 1, 52 – 69. · JFM 56.1078.03 · doi:10.1007/BF01455690 · doi.org
[14] Marston Morse, The critical points of a function of n variables, Proc. Nat. Acad. Sci. 16 (1930), 777-779. · JFM 56.0240.01
[15] Marston Morse, The critical points of a function of \? variables, Trans. Amer. Math. Soc. 33 (1931), no. 1, 72 – 91. · Zbl 0001.33103
[16] Marston Morse, The order of vanishing of the determinant of a conjugate base, Proc. Nat. Acad. Sci. 17 (1931), 319-320. · JFM 57.0604.03
[17] Marston Morse, The problems of Lagrange and Mayer with variable endpoints, by M. Morse and Sumner Byron Myers, Proc. Amer. Acad. Arts and Sci. 66 (1931), 235-253.
[18] Marston Morse, Closed extremals, Ann. of Math. (2) 32 (1931), no. 3, 549 – 566. · Zbl 0002.14201 · doi:10.2307/1968251 · doi.org
[19] Marston Morse, Sufficient conditions in the problem of Lagrange with fixed end points, Ann. of Math. (2) 32 (1931), no. 3, 567 – 577. · Zbl 0002.14002 · doi:10.2307/1968252 · doi.org
[20] Marston Morse, Sufficient Conditions in the Problem of Lagrange with Variable End Conditions, Amer. J. Math. 53 (1931), no. 3, 517 – 546. · Zbl 0002.14101 · doi:10.2307/2371163 · doi.org
[21] Marston Morse, The foundations of a theory of the calculus of variations in the large in \?-space. II, Trans. Amer. Math. Soc. 32 (1930), no. 4, 599 – 631. · JFM 56.1079.01
[22] Marston Morse, A characterization of fields in the calculus of variations, by M. Morse and S. B. Littauer, Proc. Nat. Acad. Sci. 18 (1932), 724-730. · Zbl 0006.35003
[23] Marston Morse, The calculus of variations in the large, Verhandlungen des Internationalen Mathematiker-Kongresses Zürich, 1932, Vol. 1, pp. 173-188. · Zbl 0007.21203
[24] Marston Morse, Does instability imply transitivity?, Proc. Nat. Acad. Sci. 20 (1934), 46-50. · Zbl 0008.37405
[25] Marston Morse, On certain invariants of closed extremals, by M. Morse and Everett Pitcher, Proc. Nat Acad. Sci. 20 (1934), 282-287. · Zbl 0009.31402
[26] Marston Morse and George Booth Van Schaack, The critical point theory under general boundary conditions, Ann. of Math. (2) 35 (1934), no. 3, 545 – 571. · Zbl 0010.02801 · doi:10.2307/1968750 · doi.org
[27] Marston Morse, Sufficient conditions in the problem of Lagrange without assumptions of normalcy, Trans. Amer. Math. Soc. 37 (1935), no. 1, 147 – 160. · Zbl 0011.02801
[28] Marston Morse, Instability and transitivity, Jour. de Mathématiques, Paris 14 (1935), 49-71. · Zbl 0011.13104
[29] Marston Morse, Abstract critical sets, by M. Morse and George B. Van Schaack, Proc. Nat. Acad. Sci. 21 (1935), 258-263. · Zbl 0011.35704
[30] Marston Morse, Generalized concavity theorems, Proc. Nat. Acad. Sci. 21 (1935), 359-362. · Zbl 0014.06903
[31] Marston Morse, Three theorems on the envelope of extremals, Proc. Nat. Acad. Sci. 21 (1935), 619-621; Bull. Amer. Math. Soc. 42 (1936), 136-144. · Zbl 0013.17002
[32] Marston Morse, Functional topology and abstract variational theory, Proc. Nat. Acad. Sci. 22 (1936), 313-319. · Zbl 0014.31801
[33] Marston Morse and George B. Van Schaack, Critical point theory under general boundary conditions, Duke Math. J. 2 (1936), no. 2, 220 – 242. · Zbl 0014.31704 · doi:10.1215/S0012-7094-36-00220-X · doi.org
[34] Marston Morse and Walter Leighton, Singular quadratic functionals, Trans. Amer. Math. Soc. 40 (1936), no. 2, 252 – 286. · Zbl 0015.02701
[35] Marston Morse, A special parametrization of curves, Bull. Amer. Math. Soc. 42 (1936), 915-922. · Zbl 0015.41704
[36] Marston Morse, Functional topology and abstract variational theory, Ann. of Math. (2) 38 (1937), no. 2, 386 – 449. · Zbl 0017.17203 · doi:10.2307/1968559 · doi.org
[37] Marston Morse, The index theorem in the calculus of variations, Duke Math. J. 4 (1938), no. 1, 231 – 246. · Zbl 0019.12402 · doi:10.1215/S0012-7094-38-00418-1 · doi.org
[38] Marston Morse, Functional topology and abstract variational theory, Proc. Nat. Acad. Sci. 24 (1938), 326-330. · Zbl 0019.21804
[39] Marston Morse and Gustav A. Hedlund, Symbolic Dynamics, Amer. J. Math. 60 (1938), no. 4, 815 – 866. · Zbl 0019.33502 · doi:10.2307/2371264 · doi.org
[40] Marston Morse and C. Tompkins, The existence of minimal surfaces of general critical types, Ann. of Math. (2) 40 (1939), no. 2, 443 – 472. · Zbl 0021.03405 · doi:10.2307/1968932 · doi.org
[41] Marston Morse, Sur le calcul des variations, Ann. Inst. H. Poincaré 9 (1939), 1 – 11 (French). · Zbl 0021.03403
[42] Marston Morse, La dynamique symbolique, Bull. Soc. Math. France 67 (1939), 1-7. · Zbl 0024.36305
[43] Marston Morse, Symbolic dynamics. II. Sturmian sequences, by M. Morse and G. A. Hedlund, Amer. J. Math. 61 (1940), 1-42. · Zbl 0022.34003
[44] Marston Morse, Rank and span in functional topology, Ann. of Math. (2) 41 (1940), 419 – 454. · Zbl 0024.28703 · doi:10.2307/1969014 · doi.org
[45] Marston Morse, The first variation in minimal surface theory, Duke Math. J. 6 (1940), 263 – 289. · Zbl 0027.07004
[46] Marston Morse, Twentieth century mathematics, Amer. Scholar 9 (1940), 499-504.
[47] Marston Morse and C. B. Tompkins, Unstable minimal surfaces of higher topological types, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 713 – 716. · Zbl 0063.04120
[48] Marston Morse, A mathematical theory of equilibrium with applications to minimal surface theory, Science 93 (1941), 69 – 71. · JFM 67.1041.01 · doi:10.1126/science.93.2404.69 · doi.org
[49] Marston Morse and C. Tompkins, Minimal surfaces not of minimum type by a new mode of approximation, Ann. of Math. (2) 42 (1941), 62 – 72. · Zbl 0024.41705 · doi:10.2307/1968987 · doi.org
[50] Marston Morse and C. Tompkins, Corrections to our paper on the existence of minimal surfaces of general critical types, Ann. of Math. (2) 42 (1941), 331. · Zbl 0024.32801 · doi:10.2307/1969002 · doi.org
[51] Marston Morse, Mathematics in the defense program, by M. Morse and W. L. Hart, The Math. Teacher, May 1941, pp. 195-202.
[52] Marston Morse and C. Tompkins, Unstable minimal surfaces of higher topological structure, Duke Math. J. 8 (1941), 350 – 375. · Zbl 0025.40902
[53] Marston Morse and C. Tompkins, The continuity of the area of harmonic surfaces as a function of the boundary representations, Amer. J. Math. 63 (1941), 825 – 838. · Zbl 0026.12404 · doi:10.2307/2371624 · doi.org
[54] Marston Morse, Report on the War Preparedness Committee of the AMS and MAA at the Chicago meeting, Bull. Amer. Math. Soc. 47 (1941), 829-831.
[55] Marston Morse, What is analysis in the large?, Amer. Math. Monthly 49 (1942), 358 – 364. · Zbl 0060.12311 · doi:10.2307/2303130 · doi.org
[56] Marston Morse and Gustav A. Hedlund, Manifolds without conjugate points, Trans. Amer. Math. Soc. 51 (1942), 362 – 386. · Zbl 0028.08801
[57] Marston Morse, Lacunary type number sequences in global analysis, J. Math. Pures Appl. (9) 57 (1978), no. 1, 87 – 98. · Zbl 0331.58006
[58] George Ewing and Marston Morse, The variational theory in the large including the non-regular case. I, Ann. of Math. (2) 44 (1943), 339 – 353. · Zbl 0063.01300 · doi:10.2307/1968967 · doi.org
[59] Marston Morse, Functional topology, Bull. Amer. Math. Soc. 49 (1943), 144 – 149. · Zbl 0063.04113
[60] Marston Morse and Gustav A. Hedlund, Unending chess, symbolic dynamics and a problem in semigroups, Duke Math. J. 11 (1944), 1 – 7. · Zbl 0063.04115
[61] Marston Morse and Maurice Heins, Topological methods in the theory of functions of a single complex variable. I. Deformation types of locally simple plane curves, Ann. of Math. (2) 46 (1945), 600 – 624. · Zbl 0063.04118 · doi:10.2307/1969200 · doi.org
[62] Marston Morse, The topology of pseudo-harmonic functions, Duke Math. J. 13 (1946), 21 – 42. · Zbl 0063.04114
[63] Marston Morse, George David Birkhoff and his mathematical work, Bull. Amer. Math. Soc. 52 (1946), 357 – 391. · Zbl 0060.01409
[64] Marston Morse and Maurice Heins, Topological methods in the theory of functions of a complex variable, Bull. Amer. Math. Soc. 53 (1947), 1 – 14. · Zbl 0031.39301
[65] Marston Morse and Maurice Heins, Deformation classes of meromorphic functions and their extensions to interior transformations, Acta Math. 79 (1947), 51 – 103. · Zbl 0029.29202 · doi:10.1007/BF02404694 · doi.org
[66] Marston Morse, Functions on a metric space and a setting for isoperimetric problems, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, pp. 253 – 263. · Zbl 0034.20902
[67] Marston Morse, A positive, lower semi-continuous, non-degenerate function on a metric space, Fund. Math. 35 (1948), 47 – 78. · Zbl 0031.35601
[68] Marston Morse, \?-\?- homotopy classes of locally simple curves, Ann. Soc. Polon. Math. 21 (1948), 236 – 256 (1949). · Zbl 0036.12901
[69] Marston Morse, Equilibria in nature — stable and unstable, Proc. Amer. Philos. Soc. 93 (1949), 222 – 225.
[70] Marston Morse and William Transue, The Fréchet variation and the convergence of multiple Fourier series, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 395 – 399. · Zbl 0033.35901
[71] Marston Morse and William Transue, Integral representations of bilinear functionals, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 136 – 143. · Zbl 0032.20901
[72] Marston Morse and William Transue, Functionals of bounded Fréchet variation, Canadian J. Math. 1 (1949), 153 – 165. · Zbl 0032.02802
[73] Marston Morse, Functionals F bilinear over the product A x B of two p-normed vector spaces: I. The representation of F, by M. Morse and W. Transue, Ann. of Math. (2) 50 (1949), 777-815; II. Admissible spaces A, Ann. of Math. (2) 51 (1950), 576-614. · Zbl 0036.36301
[74] Marston Morse, Les progrès de l’analyse variationnelle globale et son programme, Rendiconti di Matematica e delle sue applicazioni, Serie V, 70 (3) (4) (1948), 1-11. · Zbl 0037.34801
[75] Marston Morse, Topological methods in the theory of functions of a complex variable, Ann. Mat. Pura Appl. (4) 28 (1949), 21 – 24. · doi:10.1007/BF02411117 · doi.org
[76] Marston Morse and William Transue, A characterization of the bilinear sums associated with the classical second variation, Ann. Mat. Pura Appl. (4) 28 (1949), 25 – 68. · Zbl 0040.06302 · doi:10.1007/BF02411118 · doi.org
[77] Marston Morse, \?-\?-homotopy classes on the topological image of a projective plane, Bull. Amer. Math. Soc. 55 (1949), 981 – 1003. · Zbl 0035.11102
[78] Marston Morse and William Transue, The Fréchet variation and a generalization for multiple Fourier series of the Jordan test, Rivista Mat. Univ. Parma 1 (1950), 3 – 18. · Zbl 0040.18203
[79] Marston Morse and William Transue, The Fréchet variation, sector limits, and left decompositions, Canadian J. Math. 2 (1950), 344 – 374. · Zbl 0040.17403
[80] Marston Morse and William Transue, A calculus for Fréchet variations, J. Indian Math. Soc. (N.S.) 14 (1950), 65 – 117. · Zbl 0040.05801
[81] Marston Morse, Bowls of a non-degenerate function on a compact differentiable manifold, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 81 – 103.
[82] Marston Morse and William Transue, Norms of distribution functions associated with bilinear functionals, Contributions to Fourier Analysis, Annals of Mathematics Studies, no. 25, Princeton University Press, Princeton, N. J., 1950, pp. 104 – 144. · Zbl 0041.07501
[83] Marston Morse, Bilinear functionals over \?\times \?, Acta Sci. Math. Szeged 12 (1950), no. Leopoldo Fejér et Frederico Riesz LXX annos natis dedicatus, Pars B, 41 – 48. · Zbl 0041.42901
[84] Marston Morse, Recent advances in variational theory in the large, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., 1952, pp. 143 – 156.
[85] Marston Morse and William Transue, A new implication of the Young-Pollard convergence criteria for a Fourier Series, Duke Math. J. 18 (1951), 563 – 571. · Zbl 0042.30102
[86] Marston Morse, Trends in analysis, J. Franklin Inst. 251 (1951), 33 – 43. · doi:10.1016/0016-0032(51)90893-9 · doi.org
[87] Marston Morse, Mathematics and the arts, Yale Review 40 (1951), 604-612. 75th birthday of Robert Frost Essay given at Kenyon College.
[88] Marston Morse, Homology relations on regular orientable manifolds, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 247 – 258. · Zbl 0049.12504
[89] James A. Jenkins and Marston Morse, Contour equivalent pseudoharmonic functions and pseudoconjugates, Amer. J. Math. 74 (1952), 23 – 51. · Zbl 0046.32604 · doi:10.2307/2372067 · doi.org
[90] Marston Morse and Emilio Baiada, Homotopy and homology related to the Schoenflies problem, Ann. of Math. (2) 58 (1953), 142 – 165. · Zbl 0052.19902 · doi:10.2307/1969825 · doi.org
[91] James A. Jenkins and Marston Morse, Topological methods on Riemann surfaces. Pseudoharmonic functions, Contributions to the theory of Riemann surfaces, Annals of Mathematics Studies, no. 30, Princeton University Press, Princeton, N. J., 1953, pp. 111 – 139. · Zbl 0052.30602
[92] M. Morse, The existence of pseudoconjugates on Riemann surfaces, Fund. Math. 39 (1952), 269 – 287 (1953). · Zbl 0050.08501
[93] Marston Morse, The generalized Fréchet variation and Riesz-Young-Hausdorff type theorems, by M. Morse with W. Transue, Rend. Circ. Math. Palermo, Serie II, Tome II (1953), 35 pp. · Zbl 0051.33804
[94] James Jenkins and Marston Morse, Conjugate nets, conformal structure, and interior transformations on open Riemann surfaces, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1261 – 1268. · Zbl 0052.20003
[95] Marston Morse, Conjugate nets on an open Riemann surface, by M. Morse with J. Jenkins, Proc. Univ. Michigan Conf., June 1953. · Zbl 0052.20003
[96] James Jenkins and Marston Morse, Curve families \?* locally the level curves of a pseudoharmonic function, Acta Math. 91 (1954), 1 – 42. · Zbl 0056.09905 · doi:10.1007/BF02393423 · doi.org
[97] Marston Morse and William Transue, Semi-normed vector spaces with duals of integral type, J. Analyse Math. 4 (1954/55), 149 – 186. · Zbl 0065.34404 · doi:10.1007/BF02787719 · doi.org
[98] Marston Morse, Bimeasures and their integral extensions, Ann. Mat. Pura Appl. (4) 39 (1955), 345 – 356. · Zbl 0066.04202 · doi:10.1007/BF02410778 · doi.org
[99] Marston Morse and William Transue, \?-bimeasures \Lambda and their superior integrals \Lambda *, Rend. Circ. Mat. Palermo (2) 4 (1955), 270 – 300 (1956). · Zbl 0067.28001 · doi:10.1007/BF02854200 · doi.org
[100] Marston Morse and William Transue, The representation of a C-bimeasure on a general rectangle, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 89 – 95. · Zbl 0073.27301
[101] Marston Morse, La construction topologique d’un réseau isotherme sur une surface ouverte, J. Math. Pures Appl. (9) 35 (1956), 67 – 75 (French). · Zbl 0070.16704
[102] Marston Morse and William Transue, \?-bimeasures \Lambda and their integral extensions, Ann. of Math. (2) 64 (1956), 480 – 504. · Zbl 0073.27302 · doi:10.2307/1969597 · doi.org
[103] Marston Morse and William Transue, Products of a \?-measure and a locally integrable mapping, Canad. J. Math. 9 (1957), 475 – 486. · Zbl 0083.34001 · doi:10.4153/CJM-1957-056-4 · doi.org
[104] Marston Morse, Differentiable mappings in the Schoenflies problem, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 1068 – 1072. Marston Morse, Differentiable mappings in the Schoenflies theorem, Compositio Math. 14 (1959), 83 – 151 (1959). · Zbl 0093.37502
[105] Marston Morse and William Transue, Vector subspaces \? of \?^\? with duals of integral type, J. Math. Pures Appl. (9) 37 (1958), 343 – 363. · Zbl 0083.34002
[106] M. Morse and W. Transue, The existence of vector function spaces with duals of integral type., Colloq. Math. 6 (1958), 95 – 117. · Zbl 0087.31301
[107] Marston Morse and William Transue, The local characterization of vector function spaces with duals of integral type, J. Analyse Math. 6 (1958), 225 – 260. · Zbl 0087.31302 · doi:10.1007/BF02790237 · doi.org
[108] Memorial issue for Marston Morse, Institute of Mathematics, Academia Sinica, Taipei, 1978. Bull. Inst. Math. Acad. Sinica 6 (1978), no. 2, part 1.
[109] Marston Morse, Mathematics, the arts and freedom, Thought (Fordham Univ. Quarterly) 34 (1959), 16-24.
[110] Marston Morse, Differentiable mappings in the Schoenflies problem, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 1068 – 1072. Marston Morse, Differentiable mappings in the Schoenflies theorem, Compositio Math. 14 (1959), 83 – 151 (1959). · Zbl 0093.37502
[111] Marston Morse, Topologically non-degenerate functions on a compact \?-manifold \?., J. Analyse Math. 7 (1959), 189 – 208. · Zbl 0096.30603 · doi:10.1007/BF02787685 · doi.org
[112] Marston Morse, Fields of geodesics issuing from a point, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 105 – 111. · Zbl 0096.15303
[113] Marston Morse, The existence of polar non-degenerate functions on differentiable manifolds, Ann. of Math. (2) 71 (1960), 352 – 383. · Zbl 0096.03604 · doi:10.2307/1970086 · doi.org
[114] Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113 – 115. , https://doi.org/10.1090/S0002-9904-1960-10420-X Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74 – 76.
[115] Marston Morse, The existence of non-degenerate functions on a compact differentiable \?-manifold \?, Ann. Mat. Pura Appl. (4) 49 (1960), 117 – 128. · Zbl 0096.03603 · doi:10.1007/BF02414043 · doi.org
[116] Harold Marston Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), no. 1, 84 – 100. · JFM 48.0786.06
[117] William Huebsch and Marston Morse, An explicity solution of the Schoenflies extension problem, J. Math. Soc. Japan 12 (1960), 271 – 289. · Zbl 0096.17402 · doi:10.2969/jmsj/01230271 · doi.org
[118] William Huebsch and Marston Morse, A singularity in the Schoenflies extension, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 1100 – 1102. · Zbl 0121.40003
[119] Marston Morse, On elevating manifold differentiability, J. Indian Math. Soc. (N.S.) 24 (1960), 379 – 400 (1961). · Zbl 0104.17604
[120] William Huebsch and Marston Morse, The dependence of the Schoenflies extension on an accessory parameter., J. Analyse Math. 8 (1960/1961), 209 – 271. · Zbl 0107.40205 · doi:10.1007/BF02786851 · doi.org
[121] Marston Morse, (With W. Huebsch) Abstracts: A characterization of an analytic n-ball, and A. Schoenflies extension of a real analytic diffeomorphism of S into W. (Multilithed April 17, 1961.)
[122] Marston Morse, Boundary values of partial derivatives of Poisson integral, An. Acad. Brasil. Ci. 33 (1961), 131 – 139. · Zbl 0116.07703
[123] William Huebsch and Marston Morse, Conical singular points of diffeomorphisms, Bull. Amer. Math. Soc. 67 (1961), 490 – 493. · Zbl 0107.40301
[124] William Huebsch and Marston Morse, Schoenflies extensions of analytic families of diffeomorphisms, Math. Ann. 144 (1961), 162 – 174. · Zbl 0107.40302 · doi:10.1007/BF01451335 · doi.org
[125] William Huebsch and Marston Morse, The Schoenflies extension in the analytic case, Ann. Mat. Pura Appl. (4) 54 (1961), 359 – 378. · Zbl 0099.39304 · doi:10.1007/BF02415363 · doi.org
[126] M. Morse, Schoenflies problems, Fund. Math. 50 (1961/1962), 319 – 332. · Zbl 0101.40801
[127] William Huebsch and Marston Morse, Schoenflies extensions without interior differential singularities., Ann. of Math. (2) 76 (1962), 18 – 54. · Zbl 0111.35602 · doi:10.2307/1970263 · doi.org
[128] Marston Morse, Topological, differential, and analytic formulations of Schoenflies problems, Rend. Mat. e Appl. (5) 21 (1962), 286 – 295. · Zbl 0113.38801
[129] Marston Morse, (With W. Huebsch) Analytic diffeomorphisms approximating C, Rend. Circ. Mat. Palermo 11 (1962), 1-22.
[130] William Huebsch and Marston Morse, Diffeomorphisms of manifolds, Rend. Circ. Mat. Palermo (2) 11 (1962), 291 – 318. · Zbl 0117.16901 · doi:10.1007/BF02843877 · doi.org
[131] Marston Morse, Schoenflies extensions and differentiable isotopies, J. Math. Pures Appl. (9) 42 (1963), 29 – 41. · Zbl 0107.17202
[132] Marston Morse, An arbitrarily small analytic mapping into \?\(_{+}\) of a proper, regular, analytic \?-manifold in \?_\?, Ist. Lombardo Accad. Sci. Lett. Rend. A 97 (1963), 650 – 660 (English, with Italian summary). · Zbl 0121.40002
[133] Marston Morse, Harmonic extensions, Monatsh. Math. 67 (1963), 317 – 325. · Zbl 0151.16004 · doi:10.1007/BF01299582 · doi.org
[134] William Huebsch and Marston Morse, The dependence of the Schoenflies extension on an accessory parameter (the topological case), Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1036 – 1037. · Zbl 0117.40501
[135] William Huebsch and Marston Morse, The bowl theorem and a model nondegenerate function, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 49 – 51. · Zbl 0124.05901
[136] William Huebsch and Marston Morse, Conditioned differentiable isotopies, Differential Analysis, Bombay Colloq., 1964, Oxford Univ. Press, London, 1964, pp. 1 – 25. · Zbl 0147.42301
[137] Marston Morse, The elimination of critical points of a non-degenerate function on a differentiable manifold, J. Analyse Math. 13 (1964), 257 – 316. · Zbl 0128.16802 · doi:10.1007/BF02786621 · doi.org
[138] Marston Morse, Bowls, \?-fibre-bundles and the alteration of critical values, An. Acad. Brasil. Ci. 36 (1964), 245 – 259. · Zbl 0157.54402
[139] Marston Morse, Bowls of a non-degenerate function on a compact differentiable manifold, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 81 – 103.
[140] Marston Morse, Quadratic forms \Theta and \Theta -fibre-bundles, Ann. of Math. (2) 81 (1965), 303 – 340. · Zbl 0138.18701 · doi:10.2307/1970618 · doi.org
[141] W. Huebsch and Marston Morse, A model non-degenerate function, Rev. Roumaine Math. Pures Appl. 10 (1965), 691 – 722. · Zbl 0151.32101
[142] Marston Morse, The reduction of a function near a nondegenerate critical point, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1759 – 1763. · Zbl 0171.22101
[143] Marston Morse, Projective methods (in photogrammetry), Photogrammetric Engineering, Sept. 1966, pp. 849-855.
[144] Marston Morse, (With J. Cantwell) Diffeomorphism including automorphisms of \pi 1(T), Topology 4 (1966), 323-341. · Zbl 0141.21102
[145] Marston Morse, Non-degenerate functions on abstract diffentiable manifolds \?_\?, J. Analyse Math. 19 (1967), 231 – 272. · Zbl 0168.44303 · doi:10.1007/BF02788720 · doi.org
[146] Marston Morse, Nondegenerate real-valued differentiable functions, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 32 – 38. · Zbl 0147.42203
[147] Marston Morse, Focal sets of regular manifolds M, J. Differential Geometry 1 (1967), 1-19. · Zbl 0162.27402
[148] Marston Morse, Bowls, \?-fiber bundles, and the alteration of critical values, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1156 – 1159. · Zbl 0157.54403
[149] Marston Morse and Stewart Scott Cairns, Singular homology over \? on topological manifolds, J. Differential Geometry 3 (1969), 257 – 288. · Zbl 0195.25004
[150] Marston Morse and Stewart S. Cairns, A setting for a theorem of Bott, Proc. Nat. Acad. Sci. U.S.A. 65 (1970), 8 – 9. · Zbl 0187.20502
[151] Marston Morse, Mathematics in our culture, The Spirit and the Uses of the Mathematical Sciences by T. L. Saaty and F. J. Weyl, McGraw-Hill, New York, 1969, pp. 105-120.
[152] Marston Morse, Equilibrium points of harmonic potentials, J. Analyse Math. 23 (1970), 281 – 296. · Zbl 0206.40802 · doi:10.1007/BF02795505 · doi.org
[153] Marston Morse and Stewart Scott Cairns, Elementary quotients of abelian groups, and singular homology on manifolds, Nagoya Math. J. 39 (1970), 167 – 198. · Zbl 0197.30003
[154] Marston Morse, Subordinate quadratic forms and their complementary forms, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 579. · Zbl 0221.15023
[155] Marston Morse, Model families of quadratic forms, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 914 – 915. · Zbl 0214.05002
[156] Marston Morse and Stewart S. Cairns, Orientation of differentiable manifolds, J. Differential Geometry 6 (1971/72), 1 – 31. · Zbl 0226.58001
[157] Marston Morse, Subordinate quadratic forms and their complementary forms, Rev. Roumaine Math. Pures Appl. 16 (1971), 559 – 569. · Zbl 0221.15023
[158] Marston Morse and Stewart S. Cairns, Singular homology on an untriangulated manifold, J. Differential Geometry 7 (1972), 1 – 17. · Zbl 0293.57009
[159] Marston Morse, Axial presentations of regular arcs on \?_\?, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 3504 – 3505. · Zbl 0245.58001
[160] Marston Morse, Singular quadratic functionals, Math. Ann. 201 (1973), 315 – 340. · Zbl 0237.49013 · doi:10.1007/BF01428198 · doi.org
[161] Marston Morse, \?-deformations and \?-tractions, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 1634 – 1635. · Zbl 0257.54009
[162] Marston Morse, Fréchet curve classes, J. Math. Pures Appl. (9) 53 (1974), 291 – 298. · Zbl 0277.54007
[163] Marston Morse, Singleton critical values, Bull. Inst. Math. Acad. Sinica 2 (1974), 317 – 333. Collection of articles in celebration of the sixtieth birthday of Ky Fan. · Zbl 0294.58006
[164] Dale Landis and Marston Morse, Geodesic joins and Fréchet curve classes, Rend. Mat. (6) 8 (1975), 161 – 185 (English, with Italian summary). Collection of articles dedicated to Mauro Picone on the occasion of his ninetieth birthday. · Zbl 0313.58013
[165] Marston Morse, Connectivities \?\? of Fréchet spaces in variational topology, Proc. Nat. Acad. Sci. U. S. A. 72 (1975), 2069 – 2070. · Zbl 0304.58010
[166] Marston Morse, Topologically nondegenerate functions, Fund. Math. 88 (1975), no. 1, 17 – 52. · Zbl 0304.57017
[167] Dale Landis and Marston Morse, Tractions in critical point theory, Rocky Mountain J. Math. 5 (1975), 379 – 399. · Zbl 0313.58011 · doi:10.1216/RMJ-1975-5-3-379 · doi.org
[168] Marston Morse, Fréchet numbers in global variational analysis, Houston J. Math. 2 (1976), no. 3, 387 – 403. · Zbl 0329.58007
[169] Stewart S. Cairns and Marston Morse, Fréchet numbers and geodesics on surfaces, Bull. Inst. Math. Acad. Sinica 4 (1976), no. 1, 7 – 34. · Zbl 0332.58007
[170] Marston Morse, Conjugate points on a limiting extremal, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 6, 1800 – 1801. · Zbl 0328.49021
[171] Marston Morse, Extremal limits of nondegenerate extremals, Rend. Mat. (6) 9 (1976), no. 4, 621 – 632 (1977) (English, with Italian summary). · Zbl 0342.58016
[172] Marston Morse, Tubular presentations \pi of subsets of manifolds, Proc. Nat. Acad. Sci. 74 (1977), 2209-2210. · Zbl 0361.53042
[173] Marston Morse, Nondegenerate point pairs in global variational analysis, J. Differential Geometry 11 (1976), no. 4, 617 – 632. · Zbl 0341.58007
[174] Marston Morse, Uses of the Fréchet numbers \?\?(\?_\?) of a smooth manifold, Houston J. Math. 3 (1977), no. 4, 503 – 513. · Zbl 0382.58011
[175] Marston Morse, Lacunary type number sequences in global analysis, J. Math. Pures Appl. (9) 57 (1978), no. 1, 87 – 98. · Zbl 0331.58006
[176] Marston Morse, The Fréchet numbers of the differentiable product of two compact, connected, smooth manifolds, Bull. Inst. Math. Acad. Sinica 6 (1978), no. 2, 215 – 246. Memorial issue for Marston Morse; Edited and completed by Stewart S. Cairns. · Zbl 0405.58026
[177] Marston Morse, The calculus of variations in the large, American Mathematical Society Colloquium Publications, vol. 18, American Mathematical Society, Providence, RI, 1996. Reprint of the 1932 original. · Zbl 0011.02802
[178] Marston Morse, Functional topology and abstract variational theory, Mémorial des Sciences Mathématiques 92, Gauthier-Villars, Paris, 1939. · Zbl 0022.40403
[179] Marston Morse, Topological Methods in the Theory of Functions of a Complex Variable, Annals of Mathematics Studies, no. 15, Princeton University Press, Princeton, N. J., 1947. · Zbl 0041.39604
[180] Marston Morse, Symbolic dynamics, Lectures of 1938 with New Preface, 1966, 87 pp. (Notes by R. Oldenburger.) University Microfilms, 300 N. Zeeb Road, Ann Arbor, Mich. 48106. · Zbl 0019.33502
[181] Marston Morse and Stewart S. Cairns, Critical point theory in global analysis and differential topology: An introduction, Pure and Applied Mathematics, Vol. 33, Academic Press, New York-London, 1969. · Zbl 0293.57009
[182] Marston Morse, Variational analysis: critical extremals and Sturmian extensions, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1973. Pure and Applied Mathematics. · Zbl 0255.49002
[183] Marston Morse, Global variational analysis, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1976. Weierstrass integrals on a Riemannian manifold; Mathematical Notes, No. 16. Aldo Andreotti and Theodore Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713 – 717. , https://doi.org/10.2307/1970034 George D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917), no. 2, 199 – 300. , https://doi.org/10.1090/S0002-9947-1917-1501070-3 D. Birkoff, Quelques théorèmes sur le mouvement des systèmes dynamiques, Bull. Soc. Math. France 40 (1912), 305 – 323 (French). G. D. Birkhoff and M. R. Hestenes, Generalized minimax principle in the calculus of variations, Duke Math. J. 1 (1935), no. 4, 413 – 432. , https://doi.org/10.1215/S0012-7094-35-00128-4 Raoul Bott, Nondegenerate critical manifolds, Ann. of Math. (2) 60 (1954), 248 – 261. , https://doi.org/10.2307/1969631 Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313 – 337. , https://doi.org/10.2307/1970106 Raoul Bott and Hans Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964 – 1029. , https://doi.org/10.2307/2372843 Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113 – 115. , https://doi.org/10.1090/S0002-9904-1960-10420-X Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74 – 76. , https://doi.org/10.1090/S0002-9904-1960-10400-4 René Deheuvels, Topologie d’une fonctionnelle, Ann. of Math. (2) 61 (1955), 13 – 72 (French). , https://doi.org/10.2307/1969619 Gustav A. Hedlund, On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2) 35 (1934), no. 4, 787 – 808. , https://doi.org/10.2307/1968495 Wilhelm Klingenberg, Lectures on closed geodesics, Springer-Verlag, Berlin-New York, 1978. Grundlehren der Mathematischen Wissenschaften, Vol. 230. Barry Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59 – 65. , https://doi.org/10.1090/S0002-9904-1959-10274-3 J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. P. S. Novikov, On periodic groups, Dokl. Akad. Nauk SSSR 127 (1959), 749 – 752 (Russian). Richard S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299 – 340. , https://doi.org/10.1016/0040-9383(63)90013-2 H. L. Royden, The analytic approximation of differentiable mappings, Math. Ann. 139 (1960), 171 – 179 (1960). , https://doi.org/10.1007/BF01352908 Stephen Smale, The generalized Poincaré conjecture in higher dimensions, Bull. Amer. Math. Soc. 66 (1960), 373 – 375. , https://doi.org/10.1090/S0002-9904-1960-10458-2 S. Smale, A survey of some recent developments in differential topology, Bull. Amer. Math. Soc. 69 (1963), 131 – 145. , https://doi.org/10.1090/S0002-9904-1963-10901-5 S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747 – 817. , https://doi.org/10.1090/S0002-9904-1967-11798-1 René Thom, Sur une partition en cellules associée à une fonction sur une variété, C. R. Acad. Sci. Paris 228 (1949), 973 – 975 (French).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.