×

zbMATH — the first resource for mathematics

The set of paths in a space and its algebraic structure. A historical account. (English. French summary) Zbl 1382.01006
This paper investigates the significance of the historical concept of ‘structuralism’ in the history of modern mathematics by considering how Poincaré’s notion of fundamental group (of homotopy classes of closed paths in a topological space) was developed by subsequent generations. The paper begins with a survey of Poincaré’s various approaches to fundamental groups, before moving to the ways in which the concept was handled after Poincaré, in for example the work of Weyl, Schreier, and Reidemeister. The extension of the notion of fundamental group to that of a fundamental groupoid (of general paths) comes next, followed by the study of finer notions of equivalence than homotopy. It is noted that each of the latter developments has been used only marginally by mathematicians, compared to the original fundamental group, and reasons are given for this.
MSC:
01A60 History of mathematics in the 20th century
55-03 History of algebraic topology
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Alexander (J. W.).— A lemma on systems of knotted curves. Nat. Acad. Proc., 9, p. 93-95 (1923).
[2] Alexander (J. W.).— Topological invariants of manifolds. Nat. Acad. Proc., 10, p. 493-494 (1924).
[3] Alexander (J. W.).— Topological invariants of knots and links. Transactions A. M. S., 30, p. 275-306 (1928). · JFM 54.0603.03
[4] Alexander (J. W.) and Briggs (G. B.).— On types of knotted curves. Annals of Math., (2) 28, p. 562-586 (1927). · JFM 53.0549.02
[5] Artin (E.).— Theorie der Zöpfe. Abh. Math. Sem. Hamburg, 4, p. 47-72 (1925).
[6] Barrett (J. W.).— Holonomy and path structures in general relativity and yang-mills theory. International Journal of Theoretical Physics, 30(9), p. 1171-1215, September (1991). · Zbl 0728.53055
[7] Bourbaki (N.).— Éléments de mathématique. Part I. Les structures fondamentales de l’analyse. Livre II. Algèbre. Chapitre I. Structures algébriques. Hermann et Cie., Paris (1942). · Zbl 0098.02501
[8] Bourbaki (N.).— The architecture of mathematics. Am. Math. Monthly, 57(4), p. 221-232, (1950). · Zbl 0037.00209
[9] Brandt (H.).— Über eine Verallgemeinerung des Gruppenbegriffs. Math. Ann., 96, p. 360-366, (1926).
[10] Brechenmacher (F.).— Self-portraits with Évariste Galois (and the shadow of Camille Jordan). (Auto-portraits avec Évariste Galois (et l’ombre de Camille Jordan).). Rev. Hist. Math., 17(2), p. 271-371 (2011). · Zbl 1229.01120
[11] Brouwer (L. E. J.).— Continuous one-one transformations of surfaces in themselves. Koninklijke Nederlandse Akademie van Wetenschapen Proceedings, 15, p. 352-360 (1912).
[12] Brown (R.).— Elements of modern topology. McGraw Hill (1968). · Zbl 0159.52201
[13] Brown (R.).— From groups to groupoids: A brief survey. Bull. Lond Math. Soc., 19, p. 113-134 (1987). · Zbl 0612.20032
[14] Cartan (E.).— Sur la structure des groupes de transformations finis et continus (Thèse). Nony, Paris (1894). · Zbl 0007.10204
[15] Cartan (E.).— Sur la déformation projective des surfaces. Ann. de l’Éc. Norm., 37, p. 259-356 (1920).
[16] Cartan (E.).— Sur le problème général de la déformation. In Comptes rendus du congrès internat. des math., p. 397-406 (1920). · JFM 48.0817.02
[17] Cartan (E.).— Les récentes généralisations de la notion d’espace. Darboux Bull, (1924).
[18] Cartan (E.).— Les groupes d’holonomie des espaces généralisés. Acta Math., 48, p. 1-42, (1926). · JFM 52.0723.01
[19] Cartan (E.).— La théorie des groupes finis et continus et l’Analysis situs, volume 42 of Mémorial des sciences mathématiques. 1930. OEuvres 1, p. 1165-1225.
[20] Chandler (B.), Magnus (W.).— The history of combinatorial group theory: a case study in the history of ideas, volume 9 of Studies in the History of Mathematics and Physical Sciences. Springer, New York (1982). · Zbl 0498.20001
[21] Chevalley (C.).— L’arithmétique dans les algèbres de matrices. 33 p. (Exposés mathématiques XIV.). Actual. sci. industr. 323 (1936).
[22] Chorlay (R.).— L’émergence du couple local/global dans les théories géométriques, de Bernhard Riemann à la théorie des faisceaux 1851-1953. PhD thesis, Paris VII, direction Christian Houzel (2007).
[23] Chorlay (R.).— From problems to structures: the Cousin problems and the emergence of the sheaf concept. Arch. Hist. Exact Sci., 64(1), p. 1-73 (2010). · Zbl 1198.01001
[24] Corry (L.).— Modern algebra and the rise of mathematical structures, volume 17 of Science Network Historical Studies. Birkhäuser, Basel (1996). · Zbl 0858.01022
[25] van Dantzig (D.).— Le groupe fondamental des groupes compacts abstraits. C. R., 196, p. 1156-1159 (1933). · JFM 59.0145.01
[26] Dehn (M.).— Über die Topologie des dreidimensionalen Raumes. Mathematische Annalen, 69, p. 137-168 (1910). · JFM 41.0543.01
[27] Dehn (M.).— Die beiden Kleeblattschlingen. Math. Ann., 75, p. 1-12 (1914).
[28] Dehn (M.), Heegaard (P.).— Analysis situs. In Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, volume 3 I i, p. 153-220. Teubner (1907).
[29] Dieudonné (J.).— A history of algebraic and differential topology 1900-1960. Birkhaeuser Verlag, Boston, MA etc. (1989). · Zbl 0673.55002
[30] Eilenberg (S.), Steenrod (N. E).— Foundations of algebraic topology. Princeton University Press (1952). · Zbl 0047.41402
[31] Epple (M.).— Die Entstehung der Knotentheorie. Kontexte und Konstruktionen einer modernen mathematischen Theorie. Vieweg, Braunschweig (1999). · Zbl 0972.57001
[32] Epple (M.).— From quaternions to cosmology: Spaces of constant curvature, ca. 1873-1925. In ICM, volume III, p. 935-945 (2002). · Zbl 0997.01005
[33] Fano (G.).— Kontinuierliche geometrische Gruppen. Die Gruppentheorie als geometrisches Einteilungsprinzip. Enzyklop. d. math. Wissensch., III 1, p. 289-388 (1907). · JFM 38.0499.01
[34] Gray (J.).— Linear Differential Equations and Group Theory from Riemann to Poincaré. Birkhäuser, Boston (1986). · Zbl 0949.01001
[35] Gray (J.).— On the history of the riemann mapping theorem. Rend. Circ. Mat. Palermo, Suppl. 34, p. 47-94 (1994). · Zbl 0810.01005
[36] Hawkins (T.).— Weyl and the topology of continuous groups. In [45], p. 169-198 (1999). · Zbl 0949.22001
[37] Hawkins (T.).— Emergence of the theory of Lie groups. An Essay in the History of Mathematics, 1869-1926. Springer, New York (2000). · Zbl 0965.01001
[38] Hilb (E.).— Lineare Differentialgleichungen im komplexen Gebiet. In Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, volume II B, chapter 5, p. 471-562. Leipzig (1915). · JFM 45.0465.06
[39] Hoehnke (H.-J.).— 66 Jahre Brandtsches Gruppoid. In Heinrich Brandt 1886-1986, volume 47 of Wissenschaftliche Beiträge 1986, pages 15-79. Martin-Luther Universität Halle-Wittenberg, Halle/Saale (1986).
[40] Hopf (H.).— Vektorfelder in n-dimensionalen Mannigfaltigkeiten. Math. Ann. 96, 96, p. 225-250 (1926). · JFM 52.0571.01
[41] Houzel (C.).— Les debuts de la théorie des faisceaux. In Kashiwara, Masaki and Schapira, Pierre: Sheaves on manifolds, volume 292 of Grundlehren der Mathematischen Wissenschaften, p. 7-22. Springer-Verlag, Berlin (1990). · Zbl 0709.18001
[42] Houzel (C.).— Histoire de la théorie des faisceaux. In Jean-Michel Kantor, editor, Jean Leray (1906-1998), Gazette des Mathématiciens, supplément au numéro 84, pages 35-52. SMF (2000). · Zbl 1044.01532
[43] Hurewicz (W.).— Beiträge zur Topologie der Deformationen I. Höherdimensionale Homotopiegruppen. Proceedings of the Koninklijke Akademie von Wetenschappen te Amsterdam. Section of Sciences, 38, p. 112-119, 1935. Seifert: ZBL.010.37801. · Zbl 0010.37801
[44] Hurewicz (W.).— Beiträge zur Topologie der Deformationen II. Homotopie- und Homologiegruppen. Proceedings of the Koninklijke Akademie von Wetenschappen te Amsterdam. Section of Sciences, 38, p. 521-528 (1935). Seifert: ZBL.011.37101. · Zbl 0011.37101
[45] James (I. M.) (ed.).— History of Topology. North-Holland, Amsterdam (1999).
[46] Jordan (C.).— Des contours tracés sur les surfaces. Journal de Mathématiques Pures et Appliquées, 9, p. 110-130 (1866). OEuvres 4, p. 91-112.
[47] Jordan (C.).— Sur la déformation des surfaces. Journal de Mathématiques Pures et Appliquées, 9, p. 105-109 (1866). OEuvres 4, p. 85-89.
[48] Jordan (C.).— Traité des substitutions et des équations algébriques. Paris (1870). · Zbl 0828.01011
[49] Jordan (C.).— Mémoire sur une application de la théorie des substitutions à l’étude des équations différentielles linéaires. Bulletin Soc. Math. France, 2, p. 100-127 (1873-1874).
[50] Jordan (C.).— Sur une application de la théorie des substitutions aux équations différentielles linéaires. Comptes rendus Acad. Sciences Paris, 78, p. 741-743 (1874). · JFM 06.0204.01
[51] Klein (F.).— Vorlesungen über die hypergeometrische Funktion (G¬ottingen). Teubner, Leipzig (1894).
[52] Kneser (H.).— Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jahresbericht D. M. V., 38, p. 248-260 (1929). · JFM 55.0311.03
[53] Krömer (R.).— La « machine de Grothendieck », se fonde-t-elle seulement sur des vocables métamathématiques? Bourbaki et les catégories au cours des années cinquante. Revue d’Histoire des Mathématiques, 12, p. 111-154 (2006). · Zbl 1177.01034
[54] Krömer (R.).— Tool and object. A history and philosophy of category theory, volume 32 of Science Network Historical Studies. Birkhäuser, Basel (2007). · Zbl 1114.18001
[55] Krömer (R.).— Ein Mathematikerleben im 20. Jahrhundert. Zum 10. Todestag von Samuel Eilenberg. Mitteilungen der deutschen Mathematiker-Vereinigung, 16, p. 160-167 (2008).
[56] Krömer (R.).— Are we still Babylonians? The structure of the foundations of mathematics from a wimsattian perspective. In L. Soler E. Trizio Th. Nickles W. Wimsatt, editor, Characterizing the Robustness of the Sciences After the Practical Turn of Philosophy of Science, volume 292 of Boston Studies in the Philosophy of Science. Springer (2012).
[57] Lefschetz (S.).— Topology, volume 12 of AMS Colloquium Publ. AMS, Providence/RI (1930).
[58] Mackaay (M.), Picken (R.).— The holonomy of gerbes with connections. Adv. Math., 170, p. 287-339 (2002). · Zbl 1034.53051
[59] Marquis (J.-P.).— Some threads between homotopy theory and category theory: axiomatizing homotopy theories. Oberwolfach Reports, 08, p. 480-482 (2009).
[60] Milnor (J.).— Construction of universal bundles i. Annals Math., 63, p. 272-284 (1956). · Zbl 0071.17302
[61] Morse (H. M.).— Recurrent geodesics on a surface of negative curvature. American M. S. Trans., 22, p. 84-100 (1921). · JFM 48.0786.06
[62] Morse (H. M.).— A fundamental class of geodesics on any closed surface of genus greater than one. American M. S. Trans., 26, p. 25-60 (1924). · JFM 50.0466.04
[63] Newman (M.H.A.).— Elements of the topology of plane sets of points. University press, Cambridge, second edition (1951). · Zbl 0045.44003
[64] Nielsen (J.).— Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden. Math. Ann., 78, p. 385-397 (1917). · JFM 46.0175.01
[65] Nielsen (J.).— Über die Minimalzahl der Fixpunkte bei den Abbildungstypen der Ring ächen. Math. Ann., 82, p. 83-93 (1920). · JFM 47.0527.03
[66] Nielsen (J.).— Über fixpunktfreie topologische Abbildungen geschlossener Flächen. Math. Ann., 81, p. 94-96 (1920). · JFM 47.0527.02
[67] Nielsen (J.).— Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. Acta Math., 50, p. 189-358 (1927). · JFM 53.0545.12
[68] Noether (M.), Wirtinger (W.) (ed.).— Bernhard Riemann’s Gesammelte mathematische Werke. Nachträge (1902).
[69] Patterson (S.).— Uniformisierung und diskontinuierliche Gruppen. In [109], p. 231-240. Teubner (1997). · Zbl 0873.01017
[70] Poincaré (H.).— Théorie des groupes fuchsiens. Acta Mathematica, 1, p. 1-62 (1882).
[71] Poincaré (H.).— Sur les groupes des équations linéaires. Comptes rendus hebdomadaires de l’Académie des sciences, 96, p. 691-694 (1883). · JFM 15.0258.01
[72] Poincaré (H.).— Sur un théorème de la théorie générale des fonctions. Bulletin de la société mathématique de France, 11, p. 112-125 (1883).
[73] Poincaré (H.).— Sur les groupes des équations linéaires. Acta Mathematica, 4, p. 201-311, (1884).
[74] Poincaré (H.).— Analysis situs. Journal de l’École polytechnique, 1, p. 1-121 (1895).
[75] Poincaré (H.).— Cinquième complèment à l’analysis situs. Rendiconti del Circolo Matematico di Palermo, 18, p. 45-110 (1904). · JFM 35.0504.13
[76] Poincaré (H.).— Sur l’uniformisation des fonctions analytiques. Acta Mathematica, 31, p. 1-63, (1908).
[77] Poincaré (H.).— Œuvres, vol. 4. Gauthier-Villars, Paris (1950). · Zbl 0072.24103
[78] Poincaré (H.).— Œuvres, vol. 6. Gauthier-Villars, Paris (1953). · Zbl 0072.24103
[79] Poincaré (H.).— La correspondance entre Henri Poincaré et Gösta Mittag-Leffler (1999).
[80] Poincaré (H.).— Papers on Topology: Analysis Situs and Its Five Supplements. Translated by John Stillwell. AMS/LMS (2010). · Zbl 1204.55002
[81] Pontrjagin (L.).— Sur les groupes topologiques compacts et le cinquième problème de M. Hilbert. Comptes rendus Acad. Sciences Paris, 198, p. 238-240 (1934). · Zbl 0008.24603
[82] Pontrjagin (L.).— Topological groups. Princeton University press, 1939. Translated from the russian by Emma Lehmer. · JFM 65.0872.02
[83] Pontrjagin (L.).— Topological groups. Second edition. Gordon and Breach, New York (1966). · JFM 62.0443.02
[84] Reidemeister (K.).— Knoten und Gruppen. Abh. Math. Sem. Hamburg, 5, p. 7-23 (1927).
[85] Reidemeister (K.).— Über Knotengruppen. Abhandlungen Hamburg, 6, p. 56-64 (1928).
[86] Reidemeister (K.).— Knoten und Verkettungen. Math. Z., 29, p. 713-729 (1929). · JFM 55.0973.01
[87] Reidemeister (K.).— Einführung in die kombinatorische Topologie. Vieweg, Braunschweig (1932). · Zbl 0042.17702
[88] Reidemeister (K.).— Überdeckungen von Komplexen. J. Reine Angew. Math., 173, p. 164-173, (1935). · Zbl 0012.12604
[89] Reidemeister (K.).— Fundamentalgruppen von Komplexen. Mathematische Zeitschrift, 40, p. 406-416 (1936). · Zbl 0012.22803
[90] Sarkaria (K.S.).— The topological work of Henri Poincaré. In [45], p. 123-167 (1999). · Zbl 0959.54002
[91] Schappacher (N.), Goldstein (C.), and Schwermer (J.)(ed.).— The shaping of arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae. Springer (2007). · Zbl 1149.01001
[92] Scholz (E.).— Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincaré. Birkhäuser, Boston, Basel, Stuttgart (1980). · Zbl 0438.01004
[93] Schreier (O.).— Abstrakte kontinuierliche Gruppen. Abh. Math. Sem. Hamburg, 4, p. 15-32, (1925). · JFM 51.0112.04
[94] Schreier (O.).— Die Verwandtschaft stetiger Gruppen im großen. Abh. Math. Sem. Hamburg, 5, p. 233-244 (1927). · JFM 53.0110.02
[95] Seifert (H.) and Threlfall (W.).— Lehrbuch der Topologie. Teubner, Leipzig (1934). · Zbl 0009.08601
[96] Spanier (E. H.).— Algebraic Topology, volume 11 of McGraw Hill series in higher mathematics. McGraw Hill (1966). · Zbl 0145.43303
[97] Steenrod (N. E.).— Topological methos for the construction of tensor functions. Annals Math., 43, p. 116-131 (1942). · Zbl 0061.41001
[98] Steenrod (N. E.).— Homology with local coefficients. Annals Math. (2), 44, p. 610-627 (1943). MR5,104f. · Zbl 0061.40901
[99] Steenrod (N. E.).— The topology of fibre bundles., volume 14 of Princeton Mathematical Series. Princeton University Press, Princeton (1951). · Zbl 0054.07103
[100] Threlfall (W.), Seifert (H.).— Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes. Mathematische Annalen, 104, p. 1-70 (1930).
[101] Tietze (H.).— Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten. Monatsh. Math., 19, p. 1-118 (1908). · JFM 39.0720.05
[102] Vanden Eynde (R.).— Historical evolution of the concept of homotopic paths. Arch. Hist. Ex. Sci., pages 127-188 (1992). · Zbl 0766.01015
[103] Vanden Eynde (R.).— Development of the concept of homotopy. In [45], pages 65-102 (1999). · Zbl 0944.55001
[104] Veblen (O.).— The Cambridge Colloquium, 1916. Part II: Analysis Situs. (Amer. Math. Soc., Colloquium Lectures, vol. V.). New York: Amer. Math. Soc. VII u. 150 S. 8 0 (1922). · JFM 48.0647.10
[105] Veblen (O.), Whitehead (J. H. W.).— The foundations of Differential Geometry, volume 29 of Cambridge Tracts in Mathematics and Mathematical Physics. Cambridge Univ. Press, London (1932). · Zbl 0005.21801
[106] Volkert (K. T.).— Das Homöomorphieproblem, insbesondere der 3-Mannigfaltigkeiten, in der Topologie 1892-1935. Philosophia Scientiae, Cahier spécial 4 (2002).
[107] Weyl (H.).— Die Idee der Riemannschen Fläche.— Teubner, Leipzig (1913). · Zbl 0283.30023
[108] Weyl (H.).— On the foundations of infinitesimal geometry. Bulletin A. M. S., 35, p. 716-725 (1929). · JFM 55.1027.01
[109] Weyl (H.).— Die Idee der Riemannschen Fläche. Herausgegeben von Reinhold Remmert. Teubner, Stuttgart (1997). · Zbl 0283.30023
[110] Weyl (H.).— The concept of a Riemann surface. Translated from the German by Gerald R. MacLane. Dover, 3rd edition (2009).
[111] Whitney (H.).— Differentiable manifolds. Ann. Math., 37, p. 645-680 (1936). · Zbl 0015.32001
[112] Wussing (H.).— Die Genesis des abstrakten Gruppenbegriffs. Berlin (1969). · Zbl 0199.29101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.