×

zbMATH — the first resource for mathematics

The ascendancy of the Laplace transform and how it came about. (English) Zbl 0763.01018
As a sequel to previous articles on the history of this transform [see esp. 1980, 1984], the author here describes the achievement of textbook status. The period discussed runs from the 1937 book of Deutsch up to the war years. Contrasts in presentation are stressed, particularly concerning rigour.

MSC:
01A60 History of mathematics in the 20th century
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Angelini, A. M., Calcolo operatorio e studio dei circuiti elettrici in regime transitori (Milan 1935).
[2] Aprile, G., Elementi di calcolo operatorio funzionale (Rome: Ist. Poligrafico di Stato Libreria, 1943).
[3] Bateman, H., The control of an elastic fluid. Bull. Amer. Math. Soc. 51 (1945), 601-646. (See footnote 111.) · Zbl 0061.18803 · doi:10.1090/S0002-9904-1945-08413-4
[4] Bell, E. T., The Development of Mathematics (New York: McGraw-Hill, 1940). (See Chapter 19.) · Zbl 0025.00101
[5] Berg, E. J., Heaviside’s Operational Calculus as applied to Engineering and Physics (New York: McGraw-Hill, 1929; 2nd Edn., 1936). · JFM 55.0834.02
[6] Berg, L., Introduction to the Operational Calculus (Amsterdam: North Holland, 1967). · Zbl 0145.37701
[7] Bernstein, F., Ueber die numerische Ermittlung verborgener Periodizitäten. Z. ang. Math. Mech. 7 (1927), 441-444. · JFM 53.0508.04
[8] Bernstein, F. & Doetsch, G., Die Integralgleichung der elliptischen Thetanullfunktion. Dritte Note. Dritte Herleitung durch den verallgemeinerten Volterraprozess und weitere Beispiele (Mittag-Lefflersche Funktion und Beltramische Integralgleichung). Nach. K. Gesell. Wissens. Göttingen. Math.-Phys. Klasse (1921, 1922), 32-46.
[9] Boole, G., A Treatise on Differential Equations (Cambridge: Macmillan, 1859; 2nd Edn., ibid. 1865; 2nd Edn. reprinted as 5th Edn., New York: Chelsea, n.d. [1959?]). Pagination given in the text is from the 2nd Edn.
[10] Bromwich, T. J. I’A., Normal coordinates in dynamical systems. Proc. Lond. Math. Soc. 2 ser. 15 (1914, 1916), 401-448. · JFM 46.1181.05 · doi:10.1112/plms/s2-15.1.401
[11] Bromwich, T. J. I’A., Note on Prof. Carslaw’s paper. Math. Gaz. 14 (1928), 226-228. · doi:10.2307/3606898
[12] Bromwich, T. J. I’A., An example of operational methods. Phil. Mag. 7 ser. 6 (1928), 922-923.
[13] Broadbent, T. A. A., Review of Heaviside’s Operational Calculus as applied to Engineering and Physics (Ref. [5]) by E. J. Berg. Math. Gaz. 21 (1937), 309-310. · JFM 63.0840.09 · doi:10.2307/3606658
[14] Bush, V., Operational Circuit Analysis (New York: Wiley, 1929). · JFM 55.0838.01
[15] Carslaw, H. S., Introduction to the Mathematical Theory of Conduction of Heat in Solids. (London: Macmillan, 1921; Reprinted, New York: Dover, 1945). This work is listed as the 2nd Edn., being a reworking of part of a 1906 book published under a different title.
[16] Carslaw, H. S., Operational methods in mathematical physics (Essay-review of Operational Methods in Mathematical Physics (Ref. [69]) by H. Jeffreys). Math. Gaz. 14 (1928), 216-225. · JFM 54.0440.05 · doi:10.2307/3606896
[17] Carslaw, H. S., Historical note on Heaviside’s operational method. Math. Gaz. 22 (1938), 485. · JFM 64.1112.03 · doi:10.2307/3607266
[18] Carslaw, H. S., Operational methods in mathematical physics. Math. Gaz. 22 (1938), 264-280. · Zbl 0019.03004 · doi:10.2307/3606241
[19] Carslaw, H. S., A simple application of the Laplace transformation. Phil. Mag. 7 ser. 30 (1940), 414-417. · Zbl 0027.07101
[20] Carslaw, H. S., Note on the paper ?The Temperature Distribution around a Spherical Hole in an Infinite Conducting Medium? by Messrs. Pugh and Harris in the Phil. Mag. p. 661 (Sept. 1942). Phil. Mag. 7 ser. 34 (1943), 288.
[21] Carslaw, H. S. & J. C. Jaeger, Operational Methods in Applied Mathematics (Oxford: Clarendon, 1941). · Zbl 0060.24807
[22] Carslaw, H. S. & J. C. Jaeger, Some problems in the mathematical theory of the conduction of heat. Phil. Mag. 7 ser. 26 (1938), 473-495. · Zbl 0019.34902
[23] Carslaw, H. S. & J. C. Jaeger, The determination of Green’s function for line sources for the equation of conduction of heat in cylindrical coordinates by the Laplace transformation. Phil. Mag. 7 ser. 31 (1941), 204-208. · Zbl 0027.22302
[24] Carson, J. R., Electric Circuit Theory and the Operational Calculus (New York: Chelsea, 1926; 2nd Edn., 1952; German version, 1929). · JFM 52.0418.01
[25] Carter, G. W., The Simple Calculation of Electrical Transients: an Elementary Treatment of Transient Problems in Linear Electrical Circuits by Heaviside’s Operational Methods (London: Macmillan, 1944).
[26] Churchill, R. V., A heat conduction problem introduced by C. J. Tranter. Phil. Mag. 7 ser. 31 (1941), 81-87. · Zbl 0027.22301
[27] Churchill, R. V., Modern Operational Mathematics in Engineering (New York: McGraw-Hill, 1944; 2nd Edn. titled Operational Mathematics, 1958). · Zbl 0060.24806
[28] Cohen, L., Heaviside’s Electrical Circuit Theory (New York: McGraw-Hill, 1928).
[29] Cooper, J. L. B., Heaviside and the operational calculus. Math. Gaz. 36 (1952), 5-18. · Zbl 0046.11503 · doi:10.2307/3610762
[30] Coulthard, W. B., Transients in Electric Circuits using the Heaviside Operational Calculus (London: Pitman, 1946). · JFM 67.1042.03
[31] Cromwell, P. C., A construction theorem for evaluating operational expressions having a finite number of different roots. Trans. Amer. Inst. Elec. Eng. 60 (1941), 273-276. See also p. 676 for a comment by E. Weber. · JFM 67.0395.02 · doi:10.1109/T-AIEE.1941.5058332
[32] Dahr, K., A Course of Integrational and Operational Calculus with Applications to Physics and Electrotechnics (Stockholm: Lindstahl, 1939; German edition, ibid. 1939). · Zbl 0013.20304
[33] Dalton, J. P., Symbolic Operators (Johannesberg: Witwatersrand, 1954).
[34] Deakin, M. A. B., The development of the Laplace transform, 1737-1937: I. Euler to Spitzer, 1737-1880. Arch. Hist. Ex. Sci. 25 (1981), 343-390. · Zbl 0479.01006 · doi:10.1007/BF01395660
[35] Deakin, M. A. B., The development of the Laplace transform, 1737-1937: II. Poincaré to Doetsch, 1880-1937. Arch. Hist. Ex. Sci. 26 (1982), 351-381. · Zbl 0493.01017 · doi:10.1007/BF00418754
[36] Deakin, M. A. B., Motivating the Laplace transform. Int. J. Math. Ed. Sci. Tech. 12 (1981), 415-418. · Zbl 0473.44002 · doi:10.1080/0020739810120407
[37] Deakin, M. A. B., Operational calculus and the Laplace transform. Aust. Math. Soc. Gaz. 17 (1990), 133-139. Corrigendum, ibid., 171. · Zbl 0724.44004
[38] Deakin, M. A. B., Laplace transforms for superexponential functions. To appear. · Zbl 0813.44001
[39] Dhar, S. C., On the operational representation of M-functions of the confluent hypergeometric type. Phil. Mag. 7 ser. 25 (1938), 416-425. · Zbl 0018.15002
[40] Doetsch, G., Review of Elektrische Ausgleichsvorgänge und Operatorenrechnung (German version of Ref. [24]) Jahresb. Deutsche. Math. Ver. 39 (1930), Literarisches 105-109. An English translation is included in Ref. [126].
[41] Doetsch, G., Theorie und Anwendung der Laplace-Transformation (Berlin: Springer, 1937; 2nd Edn, New York: Dover, 1943). · JFM 63.0368.01
[42] Doetsch, G., Handbuch der Laplace-Transformation (Basel: Birkhauser; Bd. I, 1950; Bd. II, 1955; Bd. III. 1956). · Zbl 0065.34001
[43] Doetsch, G., Einfuhrung in Theorie und Anwendung der Laplace-Transformation (Berlin: Springer, 1970; English translation, ibid. 1974). · Zbl 0202.12301
[44] Droste, H. W., Die Lösung angewandter Differentialgleichungen mittels Laplacescher Transformation (Neuere Rechenverfahren der Technik 1) (Berlin: Mittler, 1939). · JFM 65.0475.01
[45] Erdélyi, A., Inversion formulae for the Laplace Transformation. Phil. Mag. 7 ser. 34 (1943), 533-537. · Zbl 0060.25204
[46] Erdélyi, A., Harry Bateman, 1882-1946. Obit. Not. Fel. Roy. Soc. 5 (1948), 590-618. See p. 598. · doi:10.1098/rsbm.1947.0020
[47] Ertel, H., Elemente der Operatorenrechnung mit geophysikalischen Anwendungen (Berlin: Springer, 1940). · Zbl 0023.12303
[48] Feller, W., An Introduction to Probability Theory and its Applications, Vol. II (New York: Wiley, 1966). · Zbl 0138.10207
[49] Gardner, M. F., Operational Calculus. Elect. Eng. 53 (1934), 1339-1347.
[50] Gardner, M. F. & J. L. Barnes, Transients in Linear Systems, Volume 1: Lumped Constant Systems (New York: Wiley, 1942). · Zbl 0060.24811
[51] Ghizzetti, A., Calcolo simbolico: La trasformazione di Laplace e il calcolo simbolico degli elettrotecnici (Bologna: Zanichelli, 1943). · Zbl 0026.23203
[52] Grünwald, E., Lösungsverfahren der Laplace-Transformation für Ausgleichsvorgänge in linearen Netzen angewandt auf selbsttätige Regelungen. Arch. Elektrotech. 35 (1941), 379-400. · Zbl 0063.01771 · doi:10.1007/BF01656949
[53] Hameister, E., Laplace-Transformation: eine Einführung für Physiker Elektro-Maschinerie und Bauingenieure (Munich: Oldenbourg, 1943; reprinted Ann Arbor: Edwards, 1946). · Zbl 0028.23102
[54] Heaviside, O., Electromagnetic Theory, Vol. III (London: ?The Electrician?, 1912; reprinted as 3rd Edn., New York: Chelsea, 1971). · JFM 43.1030.03
[55] Herreng, P., Les applications du calcul opérational (Paris: Masson, 1944). · Zbl 0060.24809
[56] Higgins, T. J., History of the operational calculus as used in electric circuit analysis. Elec. Eng. 68 (1949), 42-45.
[57] Horn, J., Integration linearer Differentialgleichungen durch Laplacesche Integrale. Math. Z. 49 (1944), 339-350, 684-701. · Zbl 0061.17305 · doi:10.1007/BF01174204
[58] Howell, W. T., On some operational representations of products of parabolic cylinder functions and products of Laguerre polynomials. Phil. Mag. 7 ser. 24 (1937), 1082-1093. · Zbl 0017.39603
[59] Howell, W. T., A note on Laguerre polynomials. Phil. Mag. 7 ser. 28 (1939), 287-288. · Zbl 0023.03201
[60] Howell, W. T., A note on the solution of some partial differential equations in the finite domain. Phil. Mag. 7 ser. 28 (1939), 396-402. · Zbl 0023.04102
[61] Humbert, P., Le calcul symbolique (Actualités scientifiques et industrielles 147) (Paris: Hermann, 1934).
[62] Ince, E. L., Ordinary Differential Equations (London: Longmans, 1927; Reprinted, New York: Dover, 1965). · JFM 53.0399.07
[63] Itoo, T., Pseudo-operational calculus. Tôhoku Math. J. 42 (1936), 230-247. · JFM 62.0482.02
[64] Jaeger, J. C., Magnetic screening by hollow circular cylinders. Phil. Mag. 7 ser. 29 (1940), 18-31. · Zbl 0023.42204
[65] Jaeger, J. C., Heat conduction in composite circular cylinders. Phil. Mag. 7 ser. 32 (1941), 324-335. · Zbl 0061.46408
[66] Jaeger, J. C., Heat conduction in a wedge, or an infinite cylinder whose cross-section is a circle or a sector of a circle. Phil. Mag. 7 ser. 33 (1942), 527-536. · Zbl 0063.03022
[67] Jaeger, J. C., Horatio Scott Carslaw, 1870-1954; A centennial oration (Ed. H. O. Lancaster). Aust. Math. Soc. Gaz. 8 (1981), 1-18.
[68] Janet, P., Le calcul symbolique d’Heaviside et ses applications à l’électrotechnique (Paris: Gauthier, 1938). · JFM 64.1112.02
[69] Jeffreys, H., Operational Methods in Mathematical Physics (Cambridge University Press, 1927; various later editions under different titles). · JFM 53.0367.01
[70] Jeffreys, H., [Reply to Carslaw.] Math. Gaz. 14 (1928), 225-226. · doi:10.2307/3606897
[71] Jeffreys, H., Heaviside’s pure mathematics. In The Heaviside Centenary Volume (London: The Institution of Electrical Engineers, 1950), 90-92.
[72] Josephs, H. J., Heaviside’s Electric Circuit Theory (London: Methuen; Brooklyn, N. Y.: Chemical Publ., 1946). · Zbl 0060.43210
[73] Koppelmann, E., The calculus of operations and the rise of abstract algebra. Arch. Hist. Ex. Sci. 8 (1972), 155-242. · Zbl 0232.01006 · doi:10.1007/BF00327101
[74] Krabbe, G., Operational Calculus (Berlin: Springer, 1970). · Zbl 0194.42901
[75] Koziumi, S., On Heaviside’s operational solution of a Volterra’s integral equation when its nucleus is a function of (x ? ?). Phil. Mag. 7 ser. 11(1931), 432-441.
[76] Koziumi, S., A new method of evaluation of the Heaviside operational expression by Fourier series. Phil. Mag. 7 ser. 19 (1935), 1061-1076.
[77] Lévy, P., Le calcul symbolique d’Heaviside. (Paris: Gauthier, 1928). · JFM 54.0972.01
[78] Lowan, A. N., On the cooling of a radioactive sphere. Phys. Rev. 44 (1933), 769-775. · Zbl 0008.33108 · doi:10.1103/PhysRev.44.769
[79] Lowan, A. N., On the operational treatment of certain mechanical and electrical problems. Phil. Mag. 7 ser. 17 (1934), 1134-1144. · Zbl 0009.25702
[80] Lowan, A. N., On the operational determination of Green’s functions in the theory of heat conduction. Phil. Mag. 7 ser. 24 (1937), 62-70. · JFM 64.0489.01
[81] Lowan, A. N., On wave-motion for infinite domains. Phil. Mag. 7 ser. 24 (1938), 340-360. · Zbl 0019.26003
[82] Lowan, A. N., On the problem of wave-motion for subinfinite domains. Phil. Mag. 7 ser. 27 (1939), 182-194. Corrigendum. ibid., 769. · Zbl 0020.30301
[83] Lowan, A. N., On some problems in the diffraction of heat. Phil. Mag. 7 ser. 29 (1940), 93-99. · Zbl 0023.23102
[84] Lowan, A. N., On the problem of wave-motion for the wedge of an angle. Phil. Mag. 7 ser. 31 (1941), 373-381. · Zbl 0028.23001
[85] Lowry, H. V., Operational calculus ? Part I. The definition of an operational representation of a function and some properties of the operator derived from this definition. Phil. Mag. 7 ser. 13 (1932), 1033-1048. · Zbl 0004.24802
[86] Lowry, H. V., Operational calculus ? Part II. The values of certain integrals and the relationship between various polynomials and series obtained by operational methods. Phil. Mag. 7 ser. 13 (1932), 1144-1163. · Zbl 0004.34505
[87] Luikov, A., The application of the Heaviside-Bromwich operational method to the solution of a problem in heat conduction. Phil. Mag. 7 ser. 22 (1936), 239-248. · JFM 62.1246.01
[88] Lützen, J., Heaviside’s operational calculus and the attempts to rigorise it. Arch. Hist. Ex. Sci. 21 (1979), 161-200. · Zbl 0419.01016 · doi:10.1007/BF00330405
[89] McLachlan, N. W., Operational systems. Phil. Mag. 7 ser. 25 (1938), 259-269. · Zbl 0018.36301
[90] McLachlan, N. W., Submarine cable problems solved by contour integration. Math. Gaz. 22 (1938), 37-41. · Zbl 0018.21504 · doi:10.2307/3607444
[91] McLachlan, N. W., Review of Elementary Theory of Operational Mathematics by E. Stephens (Ref. [121]). Math. Gaz. 22 (1938), 201-204. · doi:10.2307/3607500
[92] McLachlan, N. W., Historical note on Heaviside’s operational method. Math. Gaz. 22 (1938), 255-260. · Zbl 0019.16904 · doi:10.2307/3606239
[93] McLachlan, N. W., [Reply to Carslaw.] Math. Gaz. 22 (1938), 485. · Zbl 0020.02605 · doi:10.2307/3607266
[94] McLachlan, N. W., Operational forms and contour integrals for Bessel functions with argument a?t2?b2. Phil. Mag. 7 ser. 26 (1938), 394-408. · Zbl 0019.25601
[95] McLachlan, N. W., Operational forms and contour integrals for Struve and other functions. Phil. Mag. 7 ser. 26 (1938), 457-473. · Zbl 0019.34303
[96] McLachlan, N. W., Operational form of f(t) for a finite interval with application to impulses. Phil. Mag. 7 ser. 26 (1938), 695-704. · Zbl 0020.02605
[97] McLachlan, N. W., Complex Variable and Operational Calculus with Technical Applications (Cambridge University Press, 1939; various later editions under different titles). · Zbl 0021.22901
[98] McLachlan, N. W. & P. Humbert, Formulaire pour le calcul symbolique (Paris: Gauthier, 1941). · Zbl 0025.18303
[99] McLachlan, N. W. & A. L. Meyers, Operational forms for Bessel and Struve functions. Phil. Mag. 7 ser. 23 (1937), 918-925. · Zbl 0016.35701
[100] Mersman, W. A., Preliminary draft for an English translation of Theorie und, Anwendungen der Laplace-Transformation by G. Doetsch (Ref. [41]) (Berkeley: Department of Mechanical Engineering, University of California, 1939).
[101] Mikusi?ski, J., Rachunek operatorów (Warsaw: Pa?stowe Wydawnictwo Naukowe, 1957; English translation, Operational Calculus, Oxford: Pergamon, 1959).
[102] Moore, D. H., Heaviside Operational Calculus (New York: Elsevier, 1971). · Zbl 0209.42102
[103] Nathan, H., Article on Bernstein in Dictionary of Scientific Biography Vol. II (Ed. C. C. Gillespie et al.) (New York: Scribner, 1970), 58-59.
[104] Pipes, L. A., Operational and matrix methods in linear variable networks. Phil. Mag. 7 ser. 25 (1938), 585-600. · JFM 64.0403.02
[105] Pipes, L. A., The operational theory of solid friction. Phil. Mag. 7 ser. 25 (1938), 950-961. · JFM 64.0816.04
[106] Pipes, L. A., The operational calculus I. J. App. Phys. 10 (1939), 172-180. · JFM 65.1306.03 · doi:10.1063/1.1707292
[107] Pipes, L. A., The operational calculus II, J. App. Phys. 10 (1939), 258-264. · JFM 65.1306.03 · doi:10.1063/1.1707303
[108] Pipes, L. A., The operational calculus III. J. App. Phys. 10 (1939), 301-311. · JFM 65.1306.03 · doi:10.1063/1.1707309
[109] van der Pol, B., A simple proof and an extension of Heaviside’s operational calculus for invariable systems. Phil. Mag. 7 ser. 7 (1929), 1153-1162. · JFM 55.0487.06
[110] van der Pol, B., On the operational solution of linear differential equations and an investigation of the properties of these equations. Phil. Mag. 7 ser. 8 (1929), 861-898. · JFM 55.0255.04
[111] van der Pol, B. & H. Bremmer, Operational Calculus Based on the Two-Sided Laplace Integral (Cambridge University Press, 1950). · Zbl 0040.20403
[112] Potier, R. & J. Laplume, Le calcul symbolique et quelques applications à la physique et à l’électricité (Actualités scientifiques et industrielles 947) (Paris: Hermann, 1943). · Zbl 0060.24805
[113] Pugh, H. Ll. D. & A. J. Harris, The temperature distribution around a spherical hole in an infinite conducting medium. Phil. Mag. 7 ser. 33 (1942), 661-666. Corrigendum, ibid. 34 (1943), 288, in reply to a note by Carslaw. · Zbl 0028.36701
[114] Robertson, B. L., Operational method of circuit analysis. Elec. Eng. 54 (1935), 1037-1045.
[115] Russell, J. B., Heaviside’s direct operational calculus. Elec. Eng. 61 (1942), 84-88. · Zbl 0063.06627
[116] Schlömilch, O., Review of Studien über die Integration linearer Differentialgleichungen by S. Spitzer. Z. Math. Phys. (Schlömilch) 5 (1860), Literaturzeitung 17-18.
[117] Seeley, W. J., An Introduction to the Operational Calculus (Scranton, Pa.: International Textbook Co., 1941).
[118] Spiegel, M., Theory and Problems of Laplace Transforms (New York: McGraw-Hill (Schaum), 1965).
[119] von Stachó, T., Operationskalkül von Heaviside und Laplacesche Transformation. Acta Szeged 3 (1927), 107-120. · JFM 53.0378.01
[120] Starr, A. T., Ballistic and perfect balances in bridges treated by the operational calculus. Phil. Mag. 7 ser. 12 (1931), 265-280. · JFM 57.1448.03
[121] Stephens, E., Elementary Theory of Operational Mathematics (New York: McGraw-Hill, 1937). · Zbl 0019.34801
[122] Sumpner, W. E., Impulse functions. Phil. Mag. 7 ser. 11 (1931), 345-368. · Zbl 0001.07202
[123] Tranter, C. J., Note on a problem in the conduction of heat. Phil. Mag. 7 ser. 28 (1939), 579-583. Corrigendum, ibid. 31 (1941), 432. · Zbl 0023.04104
[124] Tranter, C. J., The application of the Laplace transformation to a problem in elastic vibrations. Phil. Mag. 7 ser. 33 (1942), 614-622. · Zbl 0063.07843
[125] Turney, T. H., Heaviside’s Operational Calculus Made Easy (London: Chapman and Hall, 1944; 2nd Edn. 1946).
[126] Vandenberg, A.-M. & M. A. B. Deakin, Operational calculus and the Laplace transform. Monash University History of Mathematics Paper 38 (1987).
[127] Varma, R. S., Operational representation of the parabolic cylinder functions. Phil. Mag. 7 ser. 22 (1936), 29-34. · Zbl 0016.39804
[128] Varma, R. S., Operational representation of the parabolic cylinder functions ? second paper. Phil. Mag. 7 ser. 23 (1937), 926-928. · Zbl 0017.01303
[129] Vignaux, J. C., Sugli integrali di Laplace asintotici. Atti Accad. naz. Lincei, Rend. Cl. Sci. fis. mat. 6 ser. 29 (1939), 396-402.
[130] Wagner, K. W., Über eine Formel von Heaviside zur Berechnung von Einschaltvorgängen. (Mit Anwendungsbeispielen.) Arch. Electrotech. 4 (1916), 159-193. · doi:10.1007/BF01676529
[131] Wagner, K. W., Operatorenrechnung nebst Anwendungen in Physik und Technik (Leipzig: Barth, 1940; various later editions under various titles).
[132] Wagner, K. W., Laplace Transformation und Operatorenrechnung. Arch. Electrotech. 35 (1941), 502-506. · Zbl 0025.41201 · doi:10.1007/BF01657288
[133] Widder, D. V., A generalization of Dirichlet’s series and of Laplace’s integrals by means of a Stieltjes integral. Trans. Amer. Math. Soc. 31 (1929), 694-743. · JFM 55.0780.01
[134] Widder, D. V., The Laplace Transform (Princeton University Press, 1946). · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.