×

Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction. (English) Zbl 1210.35179

Summary: We consider a model of fluid-structure interaction in a bounded domain \(\Omega \in \mathbb R^{2}\) where \(\Omega \) is comprised of two open adjacent sub-domains occupied, respectively, by the solid and the fluid. This leads to a study of Navier-Stokes equation coupled on the interface to the dynamic system of elasticity. The characteristic feature of this coupled model is that the resolvent is not compact and the energy function characterizing balance of the total energy is weakly degenerated. These combined with the lack of mechanical dissipation and intrinsic nonlinearity of the dynamics render the problem of asymptotic stability rather delicate. Indeed, the only source of dissipation is the viscosity effect propagated from the fluid via interface. It is shown that under suitable geometric conditions imposed on the geometry of the interface, finite energy function associated with weak solutions converges to zero when the time \(t\) converges to infinity. The required geometric conditions result from the presence of the pressure acting upon the solid.

MSC:

35Q30 Navier-Stokes equations
35Q74 PDEs in connection with mechanics of deformable solids
35B40 Asymptotic behavior of solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306(8), 837–852 (1988) · Zbl 0652.47022 · doi:10.1090/S0002-9947-1988-0933321-3
[2] Avalos, G., Triggiani, R.: The coupled PDE system arising in fluid/structure interaction. Part I: explicit semigroup generator and its spectral properties. Contemp. Math. 440, 15–54 (2007) · Zbl 1297.74035
[3] Ball, J.M.: Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Am. Math. Soc. 63, 370–373 (1977) · Zbl 0353.47017
[4] Ball, J.M.: On the asymptotic behavior of generalized processes, with application to nonlinear evolution equations. J. Differ. Equ. 27, 224–265 (1978) · Zbl 0376.35002 · doi:10.1016/0022-0396(78)90032-3
[5] Ball, J.M., Slemrod, M.: Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim. 5, 169–179 (1979) · Zbl 0405.93030 · doi:10.1007/BF01442552
[6] Barbu, V.: Nonlinear Semigroups in Banach Spaces. Nordhoff, Groningen (1974) · Zbl 0276.47044
[7] Bociu, L., Zolesio, J.P.: Linearization of a coupled system of nonlinear elasticity and viscuous fluid. Modern Theory of PDE’s. ISAACS (2010, to appear)
[8] Barbu, V., Grujic, Z., Lasiecka, I., Tuffaha, A.: Existence of the energy-level weak solutions for a nonlinear fluid-structure intercation model. Contemp. Math. 440, 55–82 (2007) · Zbl 1297.35234
[9] Barbu, V., Grujic, Z., Lasiecka, I., Tuffaha, A.: Smoothness of weak solutions to a nonlinear fluid-structure interaction model. Indiana Univ. Math. J. 57(2), 1173–1207 (2008) · Zbl 1147.74016 · doi:10.1512/iumj.2008.57.3284
[10] Brezis, H.: Asymptotic behavior of some evolutionary systems. Nonlinear Evol. Equ. 141–154 (1978)
[11] Chueshov, I., Lasiecka, I.: Long Tome Behavior of Second Order Evolutions with Nonlinear Damping. Memoires of American Mathematical Society, vol. 195. Springer, Berlin (2008). Nr. 912 · Zbl 1151.37059
[12] Caputo, R., Hammer, D.: Effects of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations. Biophysics 92, 2183–2192 (2002)
[13] Coutand, D., Shokller, S.: Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176, 25–102 (2005) · Zbl 1064.74057 · doi:10.1007/s00205-004-0340-7
[14] Desajardins, B., Esteban, M.J., Grandmont, C., Le Tallec, P.: Weak solutions for a fluid elastic structure inetraction model. Rev. Mat. Complut. 14, 523–538 (2001) · Zbl 1007.35055
[15] Du, Q., Gunzburger, M.D., Hou, L.S., Lee, J.: Analysis of a linear fluid-structure interaction problem. Discrete Contin. Dyn. Syst. 9, 633–650 (2003) · Zbl 1039.35076 · doi:10.3934/dcds.2003.9.633
[16] Fernandez, M.A., Moubachir, M.: An exact Block-Newton algorithm for solving fluid-structure interaction problems. C.R. Acad. Sci. Paris, Ser. I 336, 681–686 (2003) · Zbl 1140.74571
[17] Khismatullin, D., Truskey, G.: Three dimensional numerical simulation of receptor-medicated leukocyte adhesion to surfaces. Effects of cell deformability and viscoelasticity. Phys. Fluids 17, 031505 (2005) · Zbl 1187.76268 · doi:10.1063/1.1862635
[18] Glowinski, R., Pan, T., Hesha, T., Joseph, D., Periaux, J.: A fictious domain approach to the direct numerical simulation of incompressible viscuous flow past moving rigid bodies: Applications to particularte flow. J. Comput. Phys. 169, 363–426 (2001) · Zbl 1047.76097 · doi:10.1006/jcph.2000.6542
[19] Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to nonlinear fluid structure interactions. J. Differ. Equ. 247, 1452–1478 (2009) · Zbl 1180.35415 · doi:10.1016/j.jde.2009.06.005
[20] Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions for a fluid structure interaction system. Adv. Differ. Equ. 247, 1452–1478 (2009) · Zbl 1180.35415 · doi:10.1016/j.jde.2009.06.005
[21] Lasiecka, I.: Control Theory of Coupled PDE’s. CBMS-SIAM Lecture Notes. SIAM, Philadelphia (2002)
[22] Lasiecka, I., Seidman, T.: Strong stability of elastic control systems with dissipative saturating feedback. Syst. Control Lett. 48, 243–252 (2003) · Zbl 1157.93479 · doi:10.1016/S0167-6911(02)00269-4
[23] LaSalle, J.P.: Stability theory and invariance principles. In: Cerasir, L., Hale, J.K., LaSalle, J.P. (eds.) Dynamical Systems, vol. 1, pp. 211–222. Academic Press, New York (1976) · Zbl 0356.34047
[24] Littman, W.: Remarks on global uniqueness theorems for PDE’s. In: Differential Geometric Methods in Control of PDE’s. Contemporary Mathematics, vol. 268, pp. 363–371. AMS, Providence (2000) · Zbl 0984.35003
[25] Lions, J.L.: Controllabilite Exact and Stabilization de Systemes Distribues. Masson, Paris (1988)
[26] Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer, New York (1972) · Zbl 0227.35001
[27] Lyubich, Y.I., Phong, V.Q.: Asymptotic stability of linear differential equations in Banach spaces. Stud. Math. LXXXXVII, 37–42 (1988) · Zbl 0639.34050
[28] Moubachir, M., Zolesio, J.: Moving Shape Analysis and Control: Applications to Fluid Structure Interactions. Chapman & Hall/CRC, London (2006) · Zbl 1117.49003
[29] Sklyar, G.M.: Lack of maximal asymptotics for some linear equations in a Banach space. Dokl. Akad. Nauk 431(4), 464–467 (2010)
[30] Slemrod, M.: Stabilization of boundary control systems. J. Differ. Equ. 22, 402–415 (1976) · Zbl 0333.93038 · doi:10.1016/0022-0396(76)90036-X
[31] Slemrod, M.: Weak asymptotic decay via a ”relaxed invariance principle” for a wave equation with nonlinear, non-monotone damping. Proc. R. Soc. Edinb. A 113, 87–97 (1989) · Zbl 0699.35023
[32] Temam, R.: Navier-Stokes Equations, Studies in Math. and its Applications. North Holland, Amsterdam (1977) · Zbl 0383.35057
[33] Walker, J.A.: Dynamical Systems and Evolution Equations. Plenum, New York (1980) · Zbl 0421.34050
[34] Zhang, X., Zuazua, E.: Long time behavior of a coupled heat-wave system arising in fluid structure interaction. Arch. Ration. Mech. Anal. 24, 49–120 (2007) · Zbl 1178.74075 · doi:10.1007/s00205-006-0020-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.