×

Genetic algorithms in bidisciplinary (aerodynamics/electromagnetism) optimization. (English) Zbl 1232.90350

MSC:

90C59 Approximation methods and heuristics in mathematical programming
90C90 Applications of mathematical programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Latombe, J. C., Robot Motion Planning, Kluwer: Academic Publishers, 1991. · Zbl 0817.93045
[2] Hwang, Y. K., Ahuja, N., Gross motion planning–A survey, ACM Computer Survey, 1992, 24(3): 219–292. · doi:10.1145/136035.136037
[3] Lozano-Perez, T., Spatial planning: A configuration space approach, IEEE Trans. Computers, 1983, 32 (2): 108–120. · Zbl 0513.68081 · doi:10.1109/TC.1983.1676196
[4] Brooks, R. A., Lozano-Perez, T., A subdivision algorithm in configuration space for findpath with rotation, IEEE Trans. Systems, Man Cybernetics, 1985, 15(2): 224–233.
[5] Barraquand, J., Latombe, J. C., Robot motion planning: A distributed representation approach, Int. J. Robotics Research, 1991, 10(6): 628–649. · doi:10.1177/027836499101000604
[6] Canny, J. F., The Complexity of Robot Motion Planning, Cambridge: MIT Press, 1988. · Zbl 0668.14016
[7] Gilbert, E. G., Johnson, D. W., Distance functions and their application to robot path planning in the presence of obstacles, IEEE J. Robotics Automation, 1985, 1 (1): 21–30.
[8] Chen, P. C., Hwang, Y. K., SANDROS: A dynamic graph search algorithm for motion planning, IEEE Trans. Robotics Automation, 1998, 14 (3): 390–403. · doi:10.1109/70.678449
[9] Laumond, J. P., Jacobs, P., Taix, M. et al., A motion planner for nonholonomic mobile robots, IEEE Trans. Robotics Automation, RA-10, 1994.
[10] Khatib, O., Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robotics Research, 1986, 5 (1): 90–98. · doi:10.1177/027836498600500106
[11] Hwang, Y. K., Ahuja, N., Potential field approach to path planning, IEEE Trans. Robotics Automation, 1992, 8 (1): 23–32. · doi:10.1109/70.127236
[12] Chuang, J. H., Potential-based modeling of three-dimensional workspace for obstacle avoidance, IEEE Trans. Robotics Automation, 1998, 14(5): 778–785. · doi:10.1109/70.720353
[13] Khosla, P., Volpe, R., Superquadric artificial potentials for obstacle avoidance and approach, in Proc. IEEE Int. Conf. Robotics Automation, 1988, 1778–1784.
[14] Koditschek, D. E., Exact robot navigation by means of potential functions: Some topological considerations, In Proc. IEEE Int. Conf. Robotics Automation, 1987, 1–6.
[15] Buckley, C. E., A foundation for the flexible-trajectory approach to numeric path planning, Int. J. Robotics Research, 1989, 8 (3): 44–64. · Zbl 05421910 · doi:10.1177/027836498900800303
[16] Zhu, X. Y., Zhu, L. M., Zhong, B. L., Robot collision-free path planning utilizing gauge function, Science in China, Series E, 1997, 40 (5): 546–552. · Zbl 0888.90163
[17] Xiong, Y. L., Ding, H., General criterion and control strategy of collision-free movement for manipulators, Int. J. Robotics & Automation, 1989, 4(2): 75–80.
[18] Zhu, X. Y., Ding, H., Xiong, Y. L., Pseudo minimum translational distance between convex polyhedra (I)–Definition and properties, Science in China, Series E, 2001, 44(2): 216. · Zbl 1229.52015 · doi:10.1007/BF02879541
[19] Yuan, Y. X., Sun, W. Y., Theory and Methodology of Optimization (in Chinese), Beijing: Academic Press, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.